
Decision Support for Computational Offloading by
Probing Unknown Services

Christian Meurisch∗, Julien Gedeon∗, The An Binh Nguyen†, Fabian Kaup‡, Max Mühlhäuser∗
Technische Universität Darmstadt, Hochschulstraße 10, D-64289 Darmstadt, Germany

∗Telecooperation Lab, {meurisch,gedeon,max}@tk.tu-darmstadt.de
†Multimedia Communications Lab, the.an.binh.nguyen@kom.tu-darmstadt.de

‡Peer-to-Peer Systems Engineering, fabian.kaup@ps.tu-darmstadt.de

Abstract—Mobile Cloud Computing leverages resourceful data
centers that are distant (aka the cloud) or closely located (aka
edge servers) for computational offloading to overcome resource
limitations of modern mobile systems like smartphones or IoT
devices. Many research works investigate context-aware offload-
ing decision algorithms aiming to find the best offloading system
at runtime. However, all approaches require prior knowledge
of the offloading systems or a running service profiler on the
backend system. In this paper, we present a novel approach
that overcomes this issue by first probing available unknown
services such as nearby cloudlets or the distant cloud, and
networks in an energy-efficient way at runtime to make better
offloading decisions. For that, we investigate a probing strategy
to assess these unknown services by offloading micro tasks and
accurately predicting the performance for larger offloading tasks
using regression models. Our evaluation on three algorithms with
different time complexities shows that we achieve high prediction
accuracies up to 85.5%, already after probing of two micro tasks
running in the range of few milliseconds. To the best of our
knowledge, this is the first supplement approach for offloading
decision support that can handle unknown third-party services
requiring no prior knowledge about these offloading systems and
making no assumptions for real-world deployments.

Index Terms—mobile cloud computing, computational offload-
ing, decision support, micro-benchmarking, probing

I. INTRODUCTION

Mobile devices like smartphones featured with various
sensors and high connectivity become more and more popular
over recent years [1]. However, such mobile systems are
resource-constrained in view of computational power, storage
and battery life due to their small form factor and mobility.
Especially, the battery lifetime is still a major issue.

To address these challenges most applications rely on mo-
bile cloud computing (MCC), i.e., resource-intensive tasks
are offloaded to powerful servers to save energy [2], [3].
These servers are distant (aka the cloud) or closely located
(aka edge servers) to the users. The benefits and drawbacks
are obvious. While the cloud is highly available, provides
high computational power and has a global view, latency and
network traffic are the downsides. In contrast, edge servers like
cloudlets provide fast network connection and low latency as
well as reduce the network traffic through their proximity to
the mobile devices [4]. Depending on the cloudlet deployment
(e.g., hosted by ISP, local business or private households),
performances and range restrictions are varying [5]. In addi-
tion, the context of a mobile device, e.g., locations or network

conditions, often changes throughout the day, i.e., the mobile
device sees several - partially unknown - offloading systems
in daily life.

To find the best offloading system considering the mobile
device context, many research works investigate and propose
offloading strategies or algorithms to support the decision
making process when and where to offload resource-intensive
tasks [6], [7]. However, all existing approaches require ei-
ther prior knowledge of the offloading system or a running
profiler on the backend system. In real-world deployments,
these requirements or assumptions are not given or limited,
e.g., when the mobile device discovers unknown computing
services hosted by nearby range-restricted cloudlets.

In this paper, we overcome this issue of assessing un-
known computing services by probing them at runtime. In
this context, probing is the process of offloading micro tasks
to assess the network capabilities and the backend system.
Based on this micro benchmarks, our approach then esti-
mates the performance and the costs of large offloading tasks
using regression models to provide a decision support for
computational offloading. For that, we investigate the probing
strategy in detail: how many and which micro tasks do we need
to offload to accurately estimate the performance of larger
offloading tasks? In the next step, we evaluate the energy
consumption or overhead costs required to achieve accurate
estimations. Our results show that it is possible to predict the
runtime performance of unknown services with an accuracy up
to 85.5%, already after two micro tasks running in a range of
few milliseconds. We also show that additional performance
samples further improve our regression models and reduce
the prediction error. Existing approaches can benefit from our
probing approach and results for their real-world deployment
since they no longer need prior knowledge about the offload-
ing systems. Probing unknown services at runtime provides
required parameters (e.g., expected processing time or network
delay) for their decision algorithms.

In summary, the contributions of this paper are twofold:
• We present our novel approach to first probe unknown

services by micro-benchmarking at runtime for accurately
assessing the performance for larger offloading tasks
using regression models.

• To show the feasibility and applicability of our approach,
we evaluate a probing strategy on three algorithms with

different time complexities and also discuss the overhead
costs of probing in terms of prediction accuracy.

The remainder of this paper is organized as follows. We
first provide an overview of the related work and existing
solutions (Section II). After listing the existing works, we
highlight current issues and describe the need for offloading
strategies and probing of unknown services (Section III). In
Section IV, we present and describe our approach for probing
unknown services to support offloading decisions. Section V
specifies the experimental setup. The paper closes with the
result reporting and discussion (Section VI) as well as the
conclusion (Section VII).

II. RELATED WORK

The need for offloading computational tasks and storage
from resource-constrained mobile systems (e.g., smartphones
or Internet-of-things devices) introduced mobile cloud comput-
ing [2], [8], [9], [10] or cyber foraging [11], [12] about fifteen
years ago. Since then, various offloading approaches regard-
ing networked computing infrastructures (e.g., cloud comput-
ing [13], cloudlets [4], [14], [15], fog computing [16], [17]),
offloading techniques (e.g., MAUI [7], CloneCloud [18]),
and offloading strategies (e.g., [6], [19]) were proposed to
overcome individual issues and find a tradeoff between per-
formance, latency and network traffic.

A. Offloading Infrastructures

In [5], we already compare different existing offloading
infrastructures in terms of computational and network per-
formance. In this section, we revisit these infrastructures and
describe individual benefits and drawbacks [3].

1) Mobile Computing: Mobile devices are able to process
data locally without latency issues or offload to other nearby
mobile devices over a P2P network [20]. However, due to
their small form factor and high mobility mobile devices have
limited resources, e.g., battery life, storage and computational
power [21]. Especially, local processing of resource-intensive
tasks drains the battery very fast [5].

2) Cloud Computing: Resource-intensive tasks are of-
floaded via the Internet from mobile devices to central-
ized resourceful data centers, the cloud. The cloud is a
highly scalable computing and storage infrastructure hosted
by cloud providers (e.g., Google, Amazon, DigitalOcean or
Salesforce) [13]. A cloud serves and stores personal data of
hundreds or thousand users at a time. Security, privacy and
trust are highly critical points. However, clouds are distant to
mobile users and have too long WAN latency for responsive
applications. But they are well-suited for applications requiring
a global view or historical data. Moreover, only few data
centers are deployed in the world with high building and
operational costs.

3) Cloudlet: Resource-intensive tasks can also be offloaded
from mobile devices via wireless technologies (e.g., WLAN)
to a cloudlet, a proximate decentralized computing infras-
tructure hosted by a local business (e.g., coffee shop) [4] or
Internet Service Providers (ISP) [22]. It provides low latency

due to its proximity to mobile users and high bandwidth. Thus,
cloudlets are well-suited for real-time responsive applications
like face, gesture or object recognition that only need tempo-
rary caches [23]. Cloudlets only need to serve few users at a
time. However, a large-scale deployment of current approaches
is difficult due to their range restrictions and their relative
high costs. In [5], the authors propose upgrading wireless
home routers to enable an economic large-scale deployment of
cloudlets in urban environments. This concept sets up access
points (AP) as cloudlet. On the contrary, Xu et al. study the
strategic placements of cloudlet viewed as ’data-center in a
box’ at some AP locations in large-scale Wireless Metropolitan
Area Network (WMAN) [24].

B. Offloading Techniques

In this section, we list the different offloading techniques
ranging from data offloading and consuming computing ser-
vices over code offloading to entire virtual machine migration
maintaining program states.

1) Data Offloading: The most common used offloading
technique is data offloading (e.g., to the cloud or cloudlets)
with consuming of remote computing services [5]. Especially
in mobile sensing [1] or anticipatory mobile computing [25],
only the data are offloaded, stored and analyzed remotely to
build recognition or prediction models.

2) Method-level Code Offloading: Resource-intensive ap-
plications or algorithms (e.g., face or voice recognition) can
be (partially) offloaded. One popular framework is MAUI
which provides method-level code offloading [7]. However,
MAUI does not address the scaling of execution in cloud.
The ThinkAir framework, which also performs method-level
computation offloading, overcomes this issue by parallelizing
method execution using multiple virtual machine (VM) images
on the backend side [26]. In [27], Yang et al. introduce a
technique of compiler code analysis to identify important code
regions for offloading to reduce the network traffic.

3) Virtual Machine Migration: Instead of only offloading
data or code, the authors of CloneCloud presents a flexible
architecture that enables unmodified mobile applications to
run in an application-level cloned VM on a computational
cloud [18]. This technique ensures that the application runs
with same operational environment than on the mobile system.
However, running a cloned VM on the offloading system
requires high setup costs which is not suitable for stateless
offloading systems like cloudlets, where mobile devices are
only shortly connected.

C. Offloading Strategies

Given the variety of offloading possibilities, the mobile
device needs to decide where and when to offload resource-
intensive tasks or is it more energy-efficient to process the
task locally. Early approaches simply execute the task locally
with a timeout [28]. If the computation is not completed
within this timeout, the task is offloaded to a server. Over
the years, the decision algorithms get more complex since
they consider contextual parameters. For example, Zhou et

100 200 300 400 500

Data size [kB]

0

5

10

15

20
P

ro
ce

ss
in

g
 t

im
e

[s
]

Local (Nexus 5)

Cloudlet

Cloud

(a) Performance issues

100 200 300 400 500

Data size [kB]

0

10

20

30

40

N
et

w
o
rk

 d
el

ay
 [

s]

WiFi/LAN

WiFi/WAN

2G/WAN

3G/WAN

4G/WAN

(b) Network issues

100 200 300 400 500

Data size [kB]

0

5

10

15

20

C
o

m
p

le
ti

o
n

 t
im

e
[s

]

Local (Nexus 5)

Cloudlet over WiFi/LAN

Cloud over WiFi/WAN

Cloud over 3G/WAN

(c) Tradeoff finding issue

Fig. 1: Issues in Mobile Cloud Computing: performance, communication, and tradeoff finding

al. present a context-aware offloading decision algorithms
aiming to provide code offloading at runtime [6]. For that,
the algorithm selects the wireless medium and the offloading
resources which are most qualified for the tasks considering
the actual mobile device context. Other offloading algorithms
maximize the system throughput based on an admission cost
model [19], improve the offloading performance by a risk-
controlled decision [29], or by task delegation [30]. In [31],
Geng et al. develop an energy-efficient offloading strategy
using Dijkstra’s algorithm to find the optimal decision in
cellular networks.

However, all existing approaches require prior knowledge
of the offloading system or a running profiler on the backend
system. In real-world deployments, these requirements or
assumptions are not given or limited, e.g., when the mobile de-
vice discovers unknown computing services hosted by nearby
range-restricted cloudlets.

III. THE NEED FOR OFFLOADING STRATEGIES AND
PROBING OF UNKNOWN SERVICES

We identify three issue groups which need to be consid-
ered in terms of mobile cloud computing: (1) limited mobile
resources, e.g., battery life, storage, computational power,
(2) communication issues, e.g., latency, bandwidth, network
traffic, and (3) remote processing issues, e.g., security, privacy,
ownership, scalability, deployment and operational costs [5].

Mobile cloud computing aims to overcome the first issue of
limited mobile resources by offloading resource-intensive tasks
but then it faces with communication and performance issues.
Figure 1 illustrates these both issues on sample offloading
tasks where larger data sizes indicate more resource intensive
processing [5]. In comparison to the distant cloud or nearby
cloudlets, the performance of local processing is much lower,
especially for high resource-intensive tasks (cf. Fig. 1a). If
only a few users are connected to the offloading systems, we
can assume that performance remains roughly constant for the
same offloading task. However, we cannot assume that this is
true for the network conditions since the user carrying his
smartphone is highly mobile and has different connectivities
based on his location (cf. Fig. 1b). While the processing times
on the cloud are normally lower than the local processing
times, there exists cases where the total completion times are

0-
49

50
-9

9

10
0-

14
9

15
0-

19
9

20
0-

24
9

25
0-

29
9

30
0-

34
9

35
0-

39
9

40
0-

44
9

45
0-

50
0

Access points per day

0

10

20

30

40

U
se

rs

Fig. 2: Issue of unknown offloading systems in Mobile Cloud
Computing: daily seen access points by users (> 10min)

much lower for local processing, e.g., if the mobile device
has to offload the task via 2G connection (cf. Fig. 1c). Thus,
context-aware offloading algorithms that make a offloading
decision at runtime are required to find a tradeoff between
processing time and network delay (e.g., [6]). Some other
factors like energy consumption, resource usage, or user’s
mobility are also an issue in today’s offloading strategies (for
more details, the reader is referred to [5]).

However, we see an open and important challenge in
capturing or estimating performance characteristics of un-
known computing services. As a consequence, these third-
party services can be considered in existing offloading schemes
(e.g., [6]) from now on, and give a complete offloading
decision support in real-world deployments.

To highlight the need of assessing unknown services, we
investigate daily user behaviors. For that, we collect a large
dataset of 22, 361 unique access points spatially covering the
whole city of Darmstadt, where our university is located.
In addition, we conduct a four-week user study with 163
students living in Darmstadt to get mobility patterns with over
14 million unique location values of them [32]. Correlating
these two comprehensive data sets, Figure 2 shows how many
different access points a participant saw longer than 10
minutes in his daily life. An average user sees about 214± 89
access points in his daily life. Applying concepts like [5], [24],
we assume a small proportion of these access points will also
provide ad-hoc cloudlet functionalities in future. This small

0 0.5 1 1.5 2

Points n ×104

0

5

10

15

P
ro

ce
ss

in
g

 t
im

e
t p

 [
s]

Actual values

Forecasted values

Probing w/

micro tasks

Fig. 3: Our approach: probing of computing services with
micro tasks to estimate the performance for larger tasks

thought experiment supported by a real-world study should
illustrate how many possible offloading systems with different
characteristics a user is able to access throughout the day.
It is obvious that most of these provided computing services
are unknown to the user’s mobile device, i.e., the mobile
device does not know any performance characteristics about
the system and the network. Thus, these available offloading
systems would not be considered by conventional offloading
strategies such as [6].

IV. OUR APPROACH: PROBING

In this paper, we overcome this issue of assessing unknown
computing services by probing them at runtime. In this con-
text, probing is the process of offloading micro tasks to assess
the network capabilities and the backend system. Based on this
micro benchmarks, our approach then estimates the completion
time tc and the cost c of large offloading tasks to provide a
decision support for computational data offloading.

Time

tu td

tc = tu + tp +td

tp

Mobile
Device

Offloading
System

Tstart Tend

Fig. 4: Timing diagram between mobile device and backend
system for task offloading

Figure 3 drafts our approach of probing the performance of
backend computing systems (e.g., cloudlet or cloud) without
prior knowledge or additional profilers running on them. The
algorithm works as follows: first, we offload m micro tasks1 to
the unknown system to get some performance samples. Each
performance sample, which represents one task offloading,
contains the measured completion time tc (i.e., time range

1A micro task is a very small offloading task with a completion time in the
range of few milliseconds, while the actual offloading tasks may take several
seconds due to their larger data sizes.

between transmitting the task from the mobile device and
receiving the result back) and the measured average energy
consumption e for this on the mobile device. The completion
time tc = tt + tp consists of the network delay tt for
transmitting the task and the processing time tp for executing
the task on the backend system. The network delay tt = tu+td
can be further divided into the upload time tu of the data and
the download time td to get the result back (cf. Figure 4). Both
the upload and the download times depend on the transmitted
data sizes du and dd required for offloading the task, as well as
the bandwidths byu and byd of the given network technology y as
follows: tu = du ∗ byu or td = dd ∗ byd. Since the mobile device
can measure the completion time tc, the data sizes du and
dd, as well as the bandwidths byu and byu for the used network
technologies, we can calculate an estimated processing time of
executing the micro task on the backend system for its current
utilization at runtime:

tp = tc − du ∗ byu − dd ∗ b
y
d (1)

Utilizing energy models [33], we can calculate the average
energy consumption e and determine the energy cost for
offloading a single task:

c = e ∗ tc (2)

The total overhead cost of m micro task samples required
for our probing approach can then be calculated as:

coverhead =

m∑
i=1

ci = e ∗
m∑
i=1

tci (3)

Second, we apply a general polynomial regression model
with degree k on these m samples:

y = a0 + a1x+ a2x
2 + a3x

3 + ...+ akx
k + ε (4)

Depending on the algorithm complexity, the degree of
the polynomial regression model needs to be adjusted. For
instance, given a computing service with complexity of O(n)
the resulting model is a linear regression: y = a0 + a1x + ε.
Another example is DBSCAN - a density-based clustering
algorithm - with an average complexity of O(n log n) and
a worst case run time complexity of O(n2) [34]. We would
model this case with a quadratic polynomial or polynomial of
the second degree: y = a0 + a1x + a2x

2 + ε. All in all, our
generic approach of applying a general polynomial regression
model covers many different computational algorithms with
various complexities. The results of applying the regression
analysis on the m measured samples are the missing parame-
ters {ai|0 ≤ i ≤ k} for the forecasting equation.

In the third and last step, we can then provide decision
support for existing offloading strategies (e.g., [6]) by using
the resulting forecasting equation to estimate the cost and
the performance of the unknown service for larger offloading
tasks at its current runtime utilization. It is important to
note that this approach can be fully automatic executed and

Model LG Nexus 5
Processor Quad-core 2.26GHz Qualcomm Snapdragon 800 (ARM)
Memory 2 GB RAM
Storage 16 GB

OS Android v5.1.1 (Lollipop)
Power 3.8V, 2300mAh LiPo battery (8.74 Wh)

WLAN IEEE 802.11 a/b/g/n/ac, dual-band (2.4/5GHz)
Network GSM (2G) / UMTS (3G) / HSDPA (3.5G) / LTE (4G)

TABLE I: Smartphone specifications

Cloud Cloudlet
Processor 2x vCPU@2.4GHz (x64) 4x CPU@2.6GHz (x64)
Memory 2 GB RAM 6 GB RAM
Storage 40 GB SSD 1 TB HDD

OS Ubuntu 14.04.4 x64 Ubuntu 14.04.4 x64
Distance [km] ∼6,200 (NYC,USA) 0.005
Latency [ms] 112 / 351 / 300 / 189 14 / - / - / -(WiFi/2G/3G/4G)

TABLE II: Offloading system specifications

be integrated in existing offloading solutions as supplement
for handling - currently disregarded - unknown third-party
offloading services.

To evaluate our approach and find the best energy-efficient
probing strategy, we need to study these challenges:

• How many micro task samples need to be offloaded to
accurately estimate larger offloading tasks?

• What is the overhead of probing in terms of energy
consumption?

• What is the best tradeoff between accuracy and costs for
probing unknown computing services?

In the following of this paper, we conduct several experi-
ments to answer these research questions.

V. EXPERIMENTAL SETUP

In this section, the experimental setup is described. Studying
the probing strategy, our experimental setup simply consists
of a mobile device and two offloading systems: a cloud and
a cloudlet. Showing the overhead or costs of our probing
approach, we also need to consider the several network
connections ranging from WiFi to various cellular networks
(i.e., 2G, 3G, LTE). We implemented a profiling application
to measure the mobile resources (i.e., battery consumption,
cpu and memory usage) as well as assess the offloading
performance (i.e., processing time and network delay).

A. Hardware

1) Mobile Device: We use a LG Nexus5 smartphone
with quad-core ARM processor (Qualcomm Snapdragon 800)
which each core running at 2.26GHz, 2GB memory and 16GB
storage (cf. Table I). The operating system is a standard An-
droid 5.1.1 ROM, namely Lollipop. All background services
not required for running the operating system are disabled.
Nexus5 is equipped with 2300mAh Lithium polymer (LiPo)
battery by default. We chose this smartphone since it includes
all electronics required for measuring the battery voltage and
the current flowing from battery to the device. Thanks to

W
iF

i/L
A

N

W
iF

i/W
A

N

2G
/W

A
N

3G
/W

A
N

4G
/W

A
N

10-1

100

101

102

103

B
an

d
w

id
th

 (
lo

g
ar

it
h
m

ic
)

[M
b
p
s]

Upload rate

Download rate

Fig. 5: Network specifications: measured bandwidths of con-
sidered networks within our experiments

integrated MAX170485 fuel-gauge chip2 that provides high-
accuracy voltage measurements and battery level estimation.
It has a resolution of 1.25 mV with an error of 7.5 mV.
Accurate enough for our measurement purpose to detect differ-
ences between the single offloading use cases. Nexus5 is also
equipped with an IEEE 802.11 a/b/g/n/ac wireless transmitter
and supports all digital cellular networks ranging from 2G
(GSM) to 4G (LTE). Thus, this smartphone is able to offload
tasks to the cloud over cellular networks as well as to the
cloudlet over wireless technologies [35].

2) Cloud: As cloud backend, we use a DigitalOcean3

instance hosted in New York City, USA (cf. Table II). The
instance provides two compute units at 2.4GHz, 2GB RAM
and 40GB SSD storage. The cloud is about 6, 200km (beeline)
faraway from our university (TU Darmstadt, Germany), where
we conduct the measurements. This results in a measured
latency of 112ms or 351/300/189ms when the mobile device
is connected via WiFi or via cellular networks (2G/3G/4G)
to the next Internet access point. Consequently, we can say
latency cannot be ignore when talking about distant clouds
since these high latencies have a significant impact on the
offloading behavior [36]. For more details and benchmark
results, we refer to [5].

3) Cloudlet: As cloudlet we use a desktop computer with
quad-core x64 processor (Intel Core i5) running each core
at 2.6GHz, 6GB RAM, 1TB HDD storage and linux-based
operating system (cf. Table II). The same processing code as
used for the cloud is also used for the cloudlet. The cloudlet is
placed in the near of the mobile device (∼ 5m) with one-hop
latency (14ms) over wireless LAN.

B. Network Specifications

We consider four network connectivities in our experiments,
namely WiFi, 2G, 3G and LTE (4G). Figure 5 shows the
measured up- and download bandwidths in our test scenario.
As excepted, the bandwidths over WiFi/LAN with low latency

2http://www.maximintegrated.com/en/products/power/battery-
management/MAX17048.html (accessed 2017-01-10)

3https://www.digitalocean.com (accessed: 2017-01-10)

Algorithm Description Sample use cases Complexity
best average worst

Radix Sort Sorting algorithm Time series analysis O(n) O(n) O(n)
DBSCAN [34] Density-based clustering algorithm Sensor data (e.g., locations) processing O(n logn) O(n logn) O(n2)

DFT Frequency spectrum analysis Image, audio, or video processing O(n2) O(n2) O(n2)

TABLE III: Offloading tasks with different complexities using in our experiments

(14ms) to our cloudlet are much higher (160.95±23.12Mbps)
than over cellular networks or WiFi/WAN with 112ms latency
to the cloud. However, we do not achieve the theoretical
bandwidth values for any connectivity. Especially, the mea-
sured bandwidth values of LTE (up: 2.19± 0.28Mbps, down:
16.00 ± 1.43Mbps) are far below than the theoretical ones
(50− 150Mbps).

C. Profiling

Inspired by existing works (e.g., [37]), we implement a
lightweight runtime profiler (i.e., an Android app running in
the background) which measures three metrics for our micro-
benchmarks (aka probing): task completion time consisting
of processing time and network delay. In addition to them,
the profiler permanently monitors and logs resource usages:
CPU usage, memory usage, and energy consumption on the
mobile device. We chose a sampling rate of 300ms for CPU
and memory monitoring, and a sampling rate of 50ms - a
good, empirical determined balance between accuracy and
CPU load - for energy measurements on a Nexus5 [5].

D. Offloading Tasks

To show the feasibility and applicability of our probing
approach, we use three sample algorithms with different com-
plexities, namely Radix Sort, DBSCAN, and Discrete Fourier
Transform (DFT), as offloading tasks in our experiments (cf.
Table III). These more or less resource-intensive algorithms are
often use to process sensor data (e.g., location values, images,
audio or video streams) collected by the mobile device. Espe-
cially, responsive and latency-critical use cases such as image
processing, face or voice recognition, which rely on Discrete
Fourier Transforms with a high time complexity of O(n2),
must be nearby offloaded and are part of our evaluation.
We also investigate algorithms such as DBSCAN with time
complexities varying with different inputs of the same size.
More precisely, the time complexity of DBSCAN is unstable
and ranges between O(n logn) and O(n2), which represents
one of the challenges for estimating the task completion time.
As simple algorithm and to show that our approach also works
there, we use Radix Sort with a stable linear time complexity
of O(n).

E. Accuracy Evaluation Metrics

To evaluate the accuracy of our probing approach, we
compare our forecasted values, which are the results of our
regression analysis, against actual reference values measured
for larger offloading tasks. For each accuracy evaluation, we
choose three reference values for offloading tasks whose input
sizes are at least an order of magnitude greater than the largest

input size of micro tasks. Depending on the complexity of
the underlying algorithm, this could make a difference in the
processing times of more than one order of magnitude. For
instance, if our probing approach offloads two micro tasks
with input sizes of 5 and 10, we would use input sizes of 100,
150, and 200 as reference values.

To determine the prediction accuracy of our forecasting
method, we use a statistical measure, namely symmetric mean
absolute percentage error:

sMAPE =

∑n
i=1 |fi − ai|∑n
i=1(fi + ai)

, (5)

where n is the number of reference values, ai is the actual
reference value, and fi is the forecasted value by our probing
approach. We chose this measure to (1) get a relative com-
parable error, and (2) avoid non-symmetric issues by treating
over- and under-forecasts equally [38]. Finally, the prediction
accuracy can then be defined as

acc = (1− sMAPE) ∗ 100. (6)

We will report following results by calculating an average
accuracy, error, and energy consumption over three experimen-
tal runs per scenario to reduce measurement errors.

VI. RESULTS

The main contribution of this paper is the study of how to
probe unknown systems for providing an accurate offloading
decision support. In the following, we present our results in
terms of accuracy, overhead and costs for estimating larger
offloading tasks.

A. How Many Micro Tasks Need to Be Offloaded to Accurately
Estimate Larger Offloading Tasks?

We first investigate how many micro task samples are
required to build an accurate regression model, which is able
to predict the performance of large offloading tasks. It is
important to note that micro tasks containing comparatively
few data points and, thus, have completion times in the range
of few milliseconds. While actual offloading tasks contain
much more data points and have completion times by one
to several orders of magnitude.

To show the feasibility of our approach, we rely on a
simple reproducible probing strategy applicable to arbitrary
underlying processing algorithms: we use a micro task s0 with
data size4 du0 that would take about 100ms on the mobile
device as starting point. For each further micro task si, we then

4The data size du is proportional to the containing sensor data values n,
which are the input for the processing algorithms.

1 2 3 4 5 6

Number of micro tasks

0.1

0.2

0.3

0.4

0.5
0.6

sM
A

P
E

 (
lo

g
ar

it
h
m

ic
) µ (Mean)

σ (SD)

(a) Radix Sort

1 2 3 4 5 6

Number of micro tasks

0.1

0.2

0.3

0.4
0.5
0.6

sM
A

P
E

 (
lo

g
ar

it
h
m

ic
) µ (Mean)

σ (SD)

(b) DBSCAN

1 2 3 4 5 6

Number of micro tasks

0.1

0.2

0.3

0.4
0.5
0.6

sM
A

P
E

 (
lo

g
ar

it
h
m

ic
) µ (Mean)

σ (SD)

(c) DFT

Fig. 6: Relative prediction errors using sMAPE as function of required micro tasks considering three algorithms with different
time complexities and five test scenarios, i.e., offloading to the cloudlet and to the cloud over different network technologies

0 500 1000 1500 2000 2500

Total size [kB]

0

5

10

15

20

O
v

e
rh

e
a
d

 c
o

st
 [

W
s]

(a) Radix Sort

0 100 200 300 400 500 600 700

Total size [kB]

0

2

4

6

8

10

12
O

v
e
rh

e
a
d

 c
o

st
 [

W
s]

(b) DBSCAN

0 10 20 30 40 50 60 70

Total size [kB]

0

2

4

6

8

10

12

14

16

O
v

e
rh

e
a
d

 c
o

st
 [

W
s]

(c) DFT

Fig. 7: Total overhead costs of probing over the sum of required micro task data sizes (= total size)

add 50% of the initial data size, i.e., dui = du0 ∗ (1+0.5 ∗ i),
to obtain samples with an adequate distance for the regression
analysis. Since we use the statistical measure sMAPE to
analyze relative forecasting errors (cf. Equation 5), we can
consider the five available test scenarios covering different
backend systems and network technologies together, i.e., of-
floading to the cloudlet via WiFi/LAN as well as offloading to
the cloud via WiFi/WAN, 2G/WAN, 3G/WAN, and 4G/WAN
(cf. Figure 5).

Figure 6 shows the prediction accuracy results as a function
of required micro tasks. In Figure 6a and 6b, we can see that
the mean error of the regression model for one micro task
sample is very high for radix sort (M = 0.601, SD = 0.173) and
DBSCAN (M = 0.505, SD = 0.095). For DFT - an algorithm
with quadratic time complexity - the mean error is 0.240 for
one micro task sample, which is relative low (cf. Figure 6c).
However, the standard deviation of 0.217 is very high.

Notably, the prediction error for radix sort decreases sig-
nificantly by considering two micro task samples (M = 0.201,
SD = 0.144). The same is true for both other algorithms,
DBSCAN (M = 0.376, SD = 0.111) and DFT (M = 0.145,
SD = 0.120), although the decrease is not as high as for
radix sort. Considering three or more micro tasks in the
regression models, the prediction errors are roughly the same
for radix sort and DBSCAN. Only the DFT regression model
gets much more accurate when considering up to six micro
tasks (M = 0.061, SD = 0.070). We can also see that the

variance or standard deviation further decreases, especially by
considering six micro task samples, e.g., radix sort (M = 0.150,
SD = 0.101), and DBSCAN (M = 0.257, SD = 0.046).

In conclusion, our probing approach achieves adequately
low prediction errors for all three test algorithms by only
offloading more than one micro task. More precisely, two or
three micro tasks are entirely enough to get accurate prediction
results. We can further say that the regression model gets
more accurate, more micro tasks are considered, i.e., the mean
error and, especially, the variance decrease. However, the more
micro tasks are needed to be offloaded, the higher the overhead
costs for our probing algorithm.

B. What are the Overhead Costs of Probing?

We now investigate the correlation between the number
of micro tasks and the overhead costs, which contain the
energy consumption of the mobile device during the entire
task offloading process (cf. Equation 3).

Figure 7 shows the total overhead costs over the total data
sizes, which is the sum of required micro task data sizes.
Obviously, the higher the offloaded data size, which needs to
be transmitted and processed, the higher the overhead costs.
In the case of radix sort, this dependency is a clearly linear
correlation (cf. Figure 7a).

We see a similar correlation for DBSCAN (cf. Figure 7b)
and DFT (cf. Figure 7c). However, there is a larger spread
of the measured data points, which is accounted for by the

2 4 6 8 10 12 14 16

Overhead cost [Ws]

20

40

60

80

100
A

cc
u

ra
cy

 [
%

]

(a) Radix Sort

1 2 3 4 5 6 7

Overhead cost [Ws]

20

40

60

80

100

A
cc

u
ra

cy
 [

%
]

(b) DBSCAN

1 2 3 4 5 6 7 8 9

Overhead cost [Ws]

20

40

60

80

100

A
cc

u
ra

cy
 [

%
]

(c) DFT

Fig. 8: Tradeoff: prediction accuracy vs. accepted overhead costs for probing

different time complexities of the considered algorithms, e.g.,
DBSCAN (cf. Table III).

In conclusion, we found that an increasing number of
micro task samples improves the prediction accuracy of the
regression models more and more. However, on the contrary,
the total data size of the probing procedure, which contains the
number of micro tasks and the data size of the particular micro
tasks, is relevant in terms of overhead costs and practicality.

C. What is the Best Tradeoff Between Accuracy and Costs for
Probing Unknown Computing Services?

To show the feasibility of our approach, we investigate
the best tradeoff between a high prediction accuracy and the
number of manageable probing samples in order that probing
is still an advantage. In other words, even parallel probing
of multiple offloading services should be as energy-efficient
and accurate as possible to make an appropriate offloading
decision and avoid offloading large actual tasks to a busy or
low-performance backend system.

Figure 8 shows the results of the tradeoff analysis. The
best tradeoff for each algorithm represents the data point
that is closest to the top left corner of the plot. We can see
that the prediction accuracy reaches an accurate level over
80% and up to 85.5% considering two micro task samples
for radix sort (cf. Figure 8a) and DFT (cf. Figure 8c). To
conduct these two micro-benchmarks, only 5Ws or 3Ws are
required. Considering that these micro-benchmarks only take
few hundred milliseconds, this is an accurate and energy-
efficient way to probe backend systems. For DBSCAN, we
get 62.4% considering two samples or over 72% considering
at least three samples (cf. Figure 8b). Consequently, we
recommend to preventively execute one micro task more for
unstable algorithms such as DBSCAN with different average
and worst case time complexities than for stable algorithms
such as radix sort or DFT.

In summary, using the proposed probing strategy, we can
accurately predict the completion times of large actual of-
floading tasks in an energy-efficient way only by offloading
two micro tasks, which run in the range of milliseconds. This
shows the feasibility and applicability of our probing approach
for offloading decision support that can handle unknown
third-party services requiring no prior knowledge about these

offloading systems and making no assumptions for real-world
deployments.

VII. CONCLUSION

In this paper, we proposed a novel approach that overcomes
the cold-start problem for assessing and considering unknown
services at runtime to make better offloading decisions. For
that, our approach first probes these services by offloading
micro tasks running in the range of few milliseconds for
accurately predicting the performance for larger offloading
tasks using regression models. We evaluated our approach on
three algorithms with different time complexities. The results
show that we achieved an accuracy up to 85.5% after two
micro task samples for predicting the runtime performance
of unknown services, which is an adequate trade-off between
high prediction accuracy and low probing overhead costs.
We also show that additional performance samples further
improve our regression models and reduce the prediction error.
Existing offloading decision algorithms can now benefit from
our results and use this probing approach as supplement to
consider unknown services in their decisions. We also plan
to realize a generic open-source framework which is able
to offload arbitrary resource-intensive tasks in a smart and
fully automatic way by considering our probing approach for
unknown computing services.

ACKNOWLEDGMENT

This work has been co-funded by the LOEWE initiative
(Hessen, Germany) within the NICER project and by the
German Federal Ministry of Education and Research (BMBF)
Software Campus project ”PersonalAssistant” [01IS12054].

REFERENCES

[1] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A Survey of Mobile Phone Sensing,” Communications
Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile Cloud Computing: A
Survey,” Future Generation Computer Systems, Elsevier, vol. 29, no. 1,
pp. 84–106, 2013.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile
Cloud Computing: Architecture, Applications, and Approaches,” Wire-
less Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–
1611, 2013.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” Pervasive Computing,
IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[5] C. Meurisch, A. Seeliger, B. Schmidt, I. Schweizer, F. Kaup, and
M. Mühlhäuser, “Upgrading Wireless Home Routers for Enabling Large-
scale Deployment of Cloudlets,” in 7th Intl. Conf. on Mobile Computing,
Applications, and Services (MobiCASE’15). Springer, 2015, pp. 12–29.

[6] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
“A context Sensitive Offloading Scheme for Mobile Cloud Comput-
ing Service,” in 8th International Conference on Cloud Computing
(CLOUD’15). IEEE, 2015, pp. 869–876.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
With Code Offload,” in 8th International Conference on Mobile Systems,
Applications, and Services (MobiSys’10). ACM, 2010, pp. 49–62.

[8] A. N. Khan, M. M. Kiah, S. U. Khan, and S. A. Madani, “Towards Se-
cure Mobile Cloud Computing: A survey,” Future Generation Computer
Systems, Elsevier, vol. 29, no. 5, pp. 1278–1299, 2013.

[9] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in
Mobile Cloud Computing: Taxonomy and Open Challenges,” Commu-
nications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 369–392, 2014.

[10] A. Aijaz, H. Aghvami, and M. Amani, “A Survey on Mobile Data
Offloading: Technical and Business Perspectives,” Wireless Communi-
cations, IEEE, vol. 20, no. 2, pp. 104–112, 2013.

[11] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
Personal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.

[12] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-
I. Yang, “The Case for Cyber Foraging,” in 10th Workshop on ACM
SIGOPS European Workshop. ACM, 2002, pp. 87–92.

[13] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
2011.

[14] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The Role of Cloudlets in Hostile Environments,” Pervasive
Computing, IEEE, vol. 12, no. 4, pp. 40–49, 2013.

[15] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the Cloud to the Mobile User,” in 3th Workshop on Mobile
Cloud Computing and Services (MCS’12). ACM, 2012, pp. 29–36.

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in 1st Workshop on Mobile Cloud
Computing (MCC’12). ACM, 2012, pp. 13–16.

[17] I. Stojmenovic, “Fog Computing: A Cloud to the Ground Support
for Smart Things and Machine-to-machine Networks,” in International
Telecommunication Networks and Applications Conference (ITNAC’14).
IEEE, 2014, pp. 117–122.

[18] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic Execution Between Mobile Device and Cloud,” in 6th Conference
on Computer Systems (EuroSys’11). ACM, 2011, pp. 301–314.

[19] Q. Xia, W. Liang, and W. Xu, “Throughput Maximization for Online
Request Admissions in Mobile Cloudlets,” in 38th International Confer-
ence on Local Computer Networks (LCN’13). IEEE, 2013, pp. 589–596.

[20] B. Patra, S. Roy, and C. Chowdhury, “A Framework for Energy Efficient
and Flexible Offloading Scheme for Handheld Devices,” in 9th Inter-
national Conference on Advanced Networks and Telecommuncations
Systems (ANTS’15). IEEE, 2015, pp. 1–6.

[21] M. Satyanarayanan, “Fundamental Challenges in Mobile Computing,”
in 15th Symposium on Principles of Distributed Computing (PODC’96).
ACM, 1996, pp. 1–7.

[22] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi, “PacketCloud:
An Open Platform for Elastic In-network Services,” in 8th Interna-
tional Workshop on Mobility in the Evolving Internet Architecture
(MobiArch’13). ACM, 2013, pp. 17–22.

[23] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: Enabling Interactive Perception Applications on Mobile
Devices,” in 9th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys’11). ACM, 2011, pp. 43–56.

[24] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Capacitated Cloudlet
Placements in Wireless Metropolitan Area Networks,” in 40th Intl. Conf.
on Local Computer Networks (LCN’15). IEEE, 2015, pp. 570–578.

[25] V. Pejovic and M. Musolesi, “Anticipatory Mobile Computing: A Survey
of the State of the Art and Research Challenges,” ACM Computing
Surveys (CSUR), vol. 47, no. 3, p. 47, 2015.

[26] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading,” in 31st International Conference on Computer
Communications (INFOCOM’12). IEEE, 2012, pp. 945–953.

[27] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek,
“Fast Dynamic Execution Offloading for Efficient Mobile Cloud Com-
puting,” in 11th International Conference on Pervasive Computing and
Communications (PerCom’13). IEEE, 2013, pp. 20–28.

[28] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive Computation Offloading for En-
ergy Conservation on Battery-powered Systems,” in 13rd International
Conference on Parallel and Distributed Systems (ICPADS’07), vol. 2.
IEEE, 2007, pp. 1–8.

[29] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“COSMOS: Computation Offloading as a Service for Mobile Devices,”
in 15th International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc’14). ACM, 2014, pp. 287–296.

[30] H. Flores, S. N. Srirama, and R. Buyya, “Computational Offloading or
Data Binding? Bridging the Cloud Infrastructure to the Proximity of
the Mobile User,” in 2nd Intl. Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud’14). IEEE, 2014, pp. 10–18.

[31] Y. Geng, W. Hu, Y. Yang, W. Gao, and G. Cao, “Energy-Efficient
Computation Offloading in Cellular Networks,” in 23rd Intl. Conference
on Network Protocols (ICNP’15). IEEE, 2015, pp. 145–155.

[32] C. Meurisch, B. Schmidt, M. Scholz, I. Schweizer, and M. Mühlhäuser,
“Labels - Quantified Self App for Human Activity Sensing,” in 17th
International Conference on Ubiquitous Computing (UbiComp’15): Ad-
junct Publications. ACM, 2015, pp. 1413–1422.

[33] F. Kaup, M. Wichtlhuber, S. Rado, and D. Hausheer, “Can Multipath
TCP Save Energy? A Measuring and Modeling Study of MPTCP
Energy Consumption,” in 40th Conference on Local Computer Networks
(LCN’15). IEEE, 2015, pp. 442–445.

[34] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise.” in 2th International Conference on Knowledge, Discovery and
Data Mining (KDD’96), vol. 96, no. 34, 1996, pp. 226–231.

[35] L. Zhang, C. Zhang, J. Liu, X. Chu, K. Xu, H. Wang, and Y. Jiang,
“Power-Aware Wireless Transmission for Computation Offloading in
Mobile Cloud,” in 25th International Conference on Computer Com-
munication and Networks (ICCCN’16). IEEE, 2016, pp. 1–9.

[36] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan,
“How Close is Close Enough? Understanding the Role of Cloudlets
in Supporting Display Appropriation by Mobile Users,” in 10th In-
ternational Conference on Pervasive Computing and Communications
(PerCom’12). IEEE, 2012, pp. 122–127.

[37] C. Wang and Z. Li, “A Computation Offloading Scheme on Handheld
Devices,” Journal of Parallel and Distributed Computing, vol. 64, no. 6,
pp. 740–746, 2004.

[38] R. J. Hyndman and A. B. Koehler, “Another Look at Measures of
Forecast Accuracy,” International Journal of Forecasting, vol. 22, no. 4,
pp. 679–688, 2006.

