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Abstract—In-network processing pushes computational ca-
pabilities closer to the edge of the network, enabling new
kinds of location-aware, real-time applications, while preserving
bandwidth in the core network. This is done by offloading
computations to more powerful or energy-efficient surrogates
that are opportunistically available at the network edge. In
mobile and heterogeneous usage contexts, the question arises
how a client can discover the most appropriate surrogate in
the network for offloading a task. In this paper, we propose a
brokering mechanism that matches a client with the best available
surrogate, based on specified requirements and capabilities. The
broker is implemented on standard home routers, and thus,
leverages the ubiquity of such devices in urban environments. To
motivate the feasibility of this approach, we conduct a coverage
analysis based on collected access point locations in a major
city. Furthermore, the brokering functionality introduces only a
minimal resource overhead on the routers and can significantly
reduce the latency compared to distant, cloud-based solutions.

I. INTRODUCTION

The traditional approach to overcome limitations in an
individual device’s computing power is to offload computa-
tional tasks to a distant cloud computing infrastructure [1],
[2]. These infrastructures offer vast computational resources
at affordable costs. However, cloud computing has issues
regarding latency, mobility support, and location awareness
[3], [4]. In addition, high network bandwidth utilization and
possible security and privacy concerns are inherent to this
approach. The new paradigm of in-network processing, also
known as fog computing [5], [3] or edge computing [6], moves
these capabilities to the network edge. Here, devices referred to
as surrogates act as micro-clouds or cloudlets [7]. Compared
to distant clouds, cloudlets are small-scale, decentralized, and
opportunistic, as they can be hosted on any kind of networked
device. Other clients can exploit these cloudlets to perform
computations.

In order for client devices to find appropriate surrogates, a
local and decentralized discovery mechanism is required. The
discovery mechanism should introduce only a small latency,
which is important for new emerging applications, such as
real-time monitoring, emergency response, and augmented
reality, where even small delays have a considerable impact
on the perceived quality of service. We look at the problem
of surrogate discovery in the context of an urban area, where
we are faced with a high mobility of devices and users.

As a mechanism to enable the discovery and selection
of available surrogates, we propose a novel brokering ar-
chitecture. Available surrogates advertise themselves to the

broker and provide metadata, e.g., on their current state and
capabilities. The broker maintains information on all available
surrogates in its proximity and matches requests from clients
in order to find the best surrogate.

To this end, we implement the brokering functionality
on standard home routers, because we argue that they are
ubiquitously available and can cover large parts of urban areas.
Furthermore, the computing capacities of these devices are
underutilized most of the time and current router models often
feature multi-core processors as well as extra memory and
storage capacities that we can leverage. However, we still
need to be careful not to impede their normal functions and
therefore our brokering application introduces only a small
resource overhead on the routers.

The contributions of this paper are as follows:
• We propose a novel brokering mechanism that matches

client requests with the best available surrogates, given
certain capabilities and requirements. Multiple brokers
are interconnected using Distributed Hash Tables (DHTs)
in order to exchange information.

• We implement the proposed approach on off-the-shelf
home routers, introducing only a small resource overhead
on the devices.

• Given Wifi access points in a major city, we show that
this approach can lead to high coverage, even when only
a few routers are available.

The remainder of this paper is organized as follows: Section
II provides a case study for the analysis of router coverage in
an urban area to further motivate our approach. Section III
describes the design of our system. Our implementation is
evaluated in Section IV. Section V reviews related work and
finally, conclusions and an outlook on future work are given
in Section VI.

II. ROUTER COVERAGE IN URBAN AREAS: A CASE STUDY

The discovery mechanism we propose is implemented on
standard home routers. These devices are ubiquitous and a
large number of them is available with high density, especially
in urban areas. Ideally, this would lead to a high coverage,
which is an important metric for the quality of service offered
by wireless networks [8] and in our case reflects if a user has
a discovery-enabled router in his vicinity. Different aspects
can incentivize private users to upgrade their routers in order
to provide this added functionality. First, there are already
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Figure 1. Selected areas of the city

Table I
STATISTICS ON THE CITY AREAS

Area Size in m2 Number of Routers Router Density
1 458,814 1127 2.46
2 644,317 1755 2.72
3 1,029,600 2004 1.95

initiatives for people who are willing to share their Wifi con-
nections. We think that providing computational capabilities
on the routers is the next logical step. Second, the incentive can
also stem from a business perspective, e.g., service providers
may control what additional applications are deployed on
the router in return for a reduced monthly bill. Therefore
to further motivate the use of home routers, we perform an
analysis of the coverage that can be achieved when only a
subset of potential routers are actually enabled to provide this
functionality. To do so, we analyzed real-world data from the
city of Darmstadt, Germany. Using an Android application,
volunteers walked around the city and collected the signals
from Wifi access points. In total, 23,744 data points were
captured. The position of the access points is estimated via
triangulation from multiple measurements and the RSSI of the
discovered access points. We perform some basic filtering on
the data, such as the elimination of duplicate MAC addresses.
Furthermore, by doing a lookup on the MAC addresses, we
eliminate all manufacturers that do not produce routers. It is
important to note, that while this data might include some
wrong data and uncertainty regarding the exact position of
the access points, it still gives a good impression of how
many potential routers could be available. More importantly,
the access points were collected while walking through the
city and not inside buildings or private locations, therefore
reflecting the same usage context a mobile user who wishes
to perform opportunistic offloading has. Because the usage
patterns of our collection app were not uniform throughout the
city, we restrict our measurements to three areas of the city.
Figure 1 shows these areas within the city. Table I summarizes
information about the selected areas in terms of their size and
the number of routers present after filtering. It also gives an
indication of the density of routers, measured in their number
per 1,000 square meters.

Given this data, we perform a coverage analysis as follows:
For each percentage value from 1 to 100, we randomly select
the respective number of routers that equals that percentage.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

C
o
v
e
re

d
 A

re
a
 /

 B
a
se

lin
e
 C

o
v
e
ra

g
e

Percentage of routers selected

Area 1
Area 2
Area 3

Figure 2. Evaluation of the coverage

We assume a uniform communication range for each router
and set the radius of that range to be 30 meters, as we think
this is a realistic and conservative estimation. We calculate
the area of the union of all sensing ranges and are therefore
able to compute the coverage that is achieved, given by the
ratio between the union of the communication ranges of the
selected routers (i.e., the area that is covered by that selection
of routers) and the total size of the area (i.e., our baseline
coverage). Because we choose the routers randomly, we run
each experiment 20 times and average the results, although
the standard deviation is very low, with a maximum of 0.018.
The results of our analysis can be seen in Figure 2. For Areas
1 and 2, only about 30 percent of all routers are necessary to
achieve a coverage of close to 80 percent. For Area 3, this
is a bit lower (70%), since the density of routers is smaller.
Nevertheless, in this area we can also achieve 80 percent
coverage with just about 45 percent of all total routers. For all
Areas, 70 percent of the routers are sufficient to get over 90
percent coverage relative to the size of the area. We therefore
conclude that this approach could be viable in practice, i.e.,
with a relatively small number of upgraded routers we can
reach a high coverage.

III. SYSTEM DESIGN

In this section, we describe the design of our system, its
components, the brokering mechanism that determines the best
surrogate for a given client request and an implementation
thereof on home routers. Figure 3 shows the general
architecture of our system and the communication paths



Figure 3. System Design

between entities. To exchange messages, we use Protocol
Buffers1 as a lightweight message format. In the following,
we will describe the different entities present in our system
and explain their role.
Client Clients are the devices that wish to perform
offloading of computations, either because they do not have
the processing capabilities or in order to save battery, as to
prolong their lifetime.
Surrogate Surrogates are devices that have extra
computational power available and can therefore be used by
clients to offload computations. It is important to note that
surrogates can be various kinds of devices and, thus, are
heterogeneous regarding their capabilities.
Broker The broker is the main entity of our system.
It maintains a local directory of all surrogates that have
advertised themselves to the broker. A heartbeat mechanism
ensures that the broker periodically checks whether a
surrogate is still available. Whenever a client issues a request
to the broker, it returns the best available surrogate for the
request. This mechanism is described in detail in Section
III-A.
Registry Server All brokers in the system register themselves
to a central registry server. The registry server is required
to implement parts of our distributed approach, which is
discussed in detail in Section III-B. While the registry server
might introduce a single point of failure, it is required for
the management of the routers (e.g. in case one router
becomes unavailable). In a real-world deployment scenario,
this registry server could be managed by service providers,
guaranteeing a high availability.

1https://developers.google.com/protocol-buffers/

A. Surrogate Selection

The main functionality the broker provides is to select the
best available surrogate for an incoming client request. To do
so, the broker considers a number of attributes that surrogates
and clients send as capabilities and requirements, respectively.
The attributes we consider can be categorized as follows:
Network information This includes information about the
connectivity of the devices, such as their supported network
type and the available bandwidth.
Hardware capabilities These are the hardware properties of
the devices, such as CPU speed, memory and storage capacity.
Distance In some cases, the physical distance between the
devices and the broker might be known and for use cases like
processing locally relevant information or sharing data, this
might be considered to make the offloading decision.

When a client request arrives at the broker, the following
steps are performed:
I. First, the available network connectivities of the client and
the surrogate are compared. Clients and surrogates might use
different network interfaces (e.g. Wifi, Wifi Direct, Bluetooth,
cellular). All surrogates that do not provide at least one
common interface with the client are discarded.
II. For each of the remaining surrogates, a score is computed.
This score reflects how well a surrogate is able to match
the requirements of the client. For each of the attributes, a
surplus capability is computed. In addition, for each capability
a client can provide a weight, indicating the importance of the
respective attribute. The surrogate with the highest score (i.e.,
the sum of all weighted surplus capabilities) is then selected
and its connection information returned to the client as the
best match. The client can then initiate a connection to the
selected surrogate and perform the desired offloading. We can
also define this in a more formal way: Given a set C of clients,
a set S of surrogates and n different attributes of which we
consider the surplus score. Then, the function λ : C → S
computes the best available surrogate as follows:
λ(c) = argmaxs∈S(

∑
i=1...n αi ·βisc), where αi is the weight

and βisc the surplus capability of the surrogate s ∈ S for the
attribute i given a request from the client c ∈ C.
III. When a surrogate is selected for offloading, the broker
updates the information about the selected surrogate, i.e.,
resources that are now consumed by the client are deducted
from the initial capabilities.

B. Distributed Brokers

While a single broker is able to provide the desired function-
ality to devices locally connected to it, we consider potential
application scenarios where both clients and surrogates are
mobile and, thus, are likely to be connected to one given broker
for only a short amount of time. This of course limits the
viability of using only an isolated single broker, as information
about a surrogate will only be available on the broker it has
registered to. We therefore extend our approach to interconnect
multiple brokers. Connected brokers exchange information
about the surrogates registered to them and can send updates
when this data has changed. A naive way would be to flood



Table II
HARDWARE SPECIFICATIONS OF ROUTERS

Model Platform Target Toolchain Instruction Set CPU Clock Rate Flash Memory RAM
Netgear R7500 Qualcomm Atheros IPQ8064 ipq806x ARMv7 2x1400 MHz 128 MB 256 MB
Linksys WRT 1900AC v1 Marvell Armada XP MV78230 mvebu ARMv7 2x1200 MHz 128 MB 256 MB
Linksys WRT 3200ACM v1 Marvell Armada 385 88F6820 mvebu ARMv7 2x1866 MHz 256 MB 512 MB

the messages to all the brokers, however, this introduces a high
message overhead in the network. Instead, we use an approach
based on Distributed Hash Tables (DHT), more specifically, we
implement the Chord protocol [9]. To do so, we need a registry
server, to which each broker registers. The registry server
computes the finger table for each broker that determines to
which other brokers updates should be sent. The entries for
the finger table are computed based on a unique ID, generated
by hashing the broker’s MAC address. Once the broker has
received its finger table from the registry server, it then sends
updates to the other brokers contained in its finger table.
Similarly, brokers receive updates from other brokers in whose
finger tables they are contained. This approach also satisfies
some desirable principles of distributed systems in general,
such as transparency to the client (regardless to which of the
brokers the available surrogates have connected) or failure
resilience (in case of failure of one broker, others maintain the
latest state information). To summarize, the distributed broker
approach allows us to efficiently exchange information about
locally registered surrogates.

C. Devices

As motivated in Section II, we want to run the brokering
functionality on standard home routers. While nearly all
of these devices come with a pre-installed, vendor-specific
operating system, projects like OpenWrt2 provide an open
alternative. With the appropriate toolchain, we are therefore
able to develop own applications for the devices. To test our
approach, we chose three routers with hardware specifications
shown in Table II. We can clearly see that modern routers for
private use are equipped with enough resources to perform
other tasks besides routing. All the routers feature a dual-core
ARM-based CPU and at least 256MB of RAM. They also
have extra flash storage available, allowing the deployment of
custom applications. As operating system we chose the latest
development snapshot of OpenWrt, except for the Linksys
WRT 3200ACM, which is not yet supported. Instead, we used
LEDE3, a fork of OpenWrt with a strong community support.

IV. EVALUATION

In this section, we analyze the viability of our approach with
respect to latency, the performance and resource overhead on
the devices and the benefits of our distributed approach.
First, it is crucial for our brokering application to introduce
only a small resource consumption on the routers, as to not
impede their normal function. This also serves as a motivation

2https://openwrt.org
3https://lede-project.org
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to make one’s home router available. Figure 4 shows the CPU
utilization on the Netgear R7500 when a fixed number of 50
surrogates are registered to the broker. We measure the CPU
utilization in percent when a varying number of parallel clients
request for a surrogate and perform 5 experiments in total.
From the graph, we can see that even with a high number
of 60 client requests, the CPU utilization is under 7 percent.
Given the hardware specifications of the device (cf. Table II),
this is a very low utilization and ensures the owner is still
able to use the device as originally intended. The memory
utilization on the routers is negligible with a near-constant
2%. Next, we take a look at the execution time, i.e., the time
the broker needs to compute the best surrogates for client
requests. Again, we assume that 50 surrogates have advertised
themselves to the broker. Figure 5 shows the execution time
for a varying number of threaded client requests. Even with
60 clients, the execution time is under 9 ms. In practice, we
can fairly assume this number to be much less. To put this
into perspective, with up to 20 client requests, the execution
time remains below 4 ms. Our main motivation for deploying
the brokering mechanism on close-by routers are the benefits
in terms of latency we can achieve compared to a distant,



 1

 10

 100

 1000

10 20 30 40 50 60

E
n
d
-t

o
-e

n
d
 L

a
te

n
cy

 (
m

s)

Number of Clients

Local Router
Berlin

New York
Sydney

Figure 6. Latency measurements

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 

M
e
ss

a
g
e
s

Number of Brokers

Flooding
DHT Overlay

Figure 7. Message overhead

cloud-based broker. To show the benefit of our approach, we
compare the end-to-end latency in Figure 6, depending on
where the brokering functionality is deployed. Clearly, our
approach outperforms the other scenarios, where the brokering
functionality is placed on distant servers, either in Berlin, New
York or Sydney. The beeline distances to these places from our
location are 443 km, 6218 km and 16,500 km. To evaluate
our distributed broker approach, we first look at the benefit of
using a DHT overlay instead of flooding the update messages
to all brokers in the network. Given a single round of update
messages, Figure 7 shows how many messages are sent using
either flooding or a DHT overlay for a varying number of
brokers from 1 to 30. For flooding, the number of messages
equals n−1, where n is the number of brokers. Using a DHT,
n is equal to the number of other brokers a broker has in its
finger table. On average, this results in 80% less messages
being sent compared to flooding. Our distributed approach
furthermore enables to find surrogates that have registered to
other brokers than the client is connected to. This is made
possible by the exchange of surrogate information between
the brokers. Without this, a given client request might not
be satisfied by the locally available surrogates, and therefore
would have to be rejected by the broker. We compare the
number of rejections in an example setup of 10 brokers with
numbers of surrogates and clients as listed in Table III, each
of them having different requirements and capabilities. Figure
8 shows the client rejections for the 10 brokers, i.e., how many
client request have to be rejected in each approach. Overall,

Table III
EXPERIMENTAL SETUP FOR THE COMPARISON OF THE REJECTION RATE

Broker # Number of surrogates Number of clients
1 10 20
2 7 15
3 5 10
4 2 5
5 3 10
6 8 15
7 1 5
8 4 10
9 6 15
10 9 20

in this setup, we could decrease the number of rejected clients
by 57%.

V. RELATED WORK

The problem of service discovery has been studied exten-
sively since the proliferation of distributed computing. In the
context of surrogate discovery for cyber foraging, according
to [10], we can distinguish between directory-based and non
directory-based discovery mechanisms. The latter eliminate
the need to maintain an explicit list of known surrogates [11],
[12]. Directory-based approaches can either be local, i.e., the
available surrogates are stored on mobile devices [13], [14] or
remote, i.e., the available surrogates are maintained in a distant
repository [15], [16]. Existing approaches however typically
operate in less dynamic environments. We consider scenarios
with a high mobility of both clients and surrogates and intro-
duce a way to exchange information about available surrogates
in a distributed manner in order to provide a high number of
potential surrogates for offloading. Leveraging standard home
routers has been examined previously [17], [18], however,
this existing work uses the devices as a computing entity,
which depending on their capabilities might not lead to a high
performance. We instead propose to use routers as proxies to
find appropriate surrogates in an urban usage context. Other
work has examined the ideal placement of access points from
the user perspective [19]. We however assume we cannot
control the placement of routers and analyze real-world data
collected in a major city to estimate the coverage that can be
achieved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a brokering system that enables
clients to find suitable surrogates for computational offloading.
This is based on the use case of in-network processing, where
highly mobile users need to discover close-by surrogates they
can leverage. Based on metadata from both the surrogates and
the clients that describe their capabilities and requirements,
the broker finds the best available surrogate for a given client
request. Furthermore, we enable the interconnection between
multiple brokers through a DHT overlay. To demonstrate
our approach, we implement the brokering application on
standard home routers, thus leveraging existing devices that
are ubiquitously present in urban areas. We have shown that
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Figure 8. Number of rejected client requests on the brokers

placing the brokering functionality on routers that are close to
the end users is beneficial in terms of the network latency. In
addition, our approach introduces only a small overhead on the
devices and therefore does not impede their normal function.
The analysis of Wifi access points collected in a major city
has shown that even if only a small number of people are
willing to upgrade their devices in order to provide this added
functionality, we can achieve a high coverage.

In future work, we will examine the role of brokers as proxy
nodes to relay data between clients and surrogates. Based on
its own resource availability and processing power, a router
also might opportunistically decide to perform certain compu-
tations on its own if it can meet the client’s requirements,
thus eliminating the need for a client-surrogate connection
and further lowering the end-to-end latency. Regarding the
coverage analysis, instead of only considering the locations of
access points we plan to correlate them with mobility traces
from users, thereby giving us an even more accurate estimation
of the coverage this approach can achieve.
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M. Mühlhäuser, “Upgrading wireless home routers for enabling large-
scale deployment of cloudlets,” in International Conference on Mobile
Computing, Applications, and Services. Springer, 2015, pp. 12–29.

[18] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in 2016 IEEE/ACM
Symposium on Edge Computing (SEC), Oct 2016, pp. 1–13.

[19] E. Bulut and B. K. Szymanski, “Rethinking offloading wifi access point
deployment from user perspective,” in 2016 IEEE 12th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), Oct 2016, pp. 1–6.


