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Abstract—Current edge computing frameworks require tight
coupling between mobile clients and surrogates, i.e., the of-
floaded code has been preconfigured with its required execution
environment. In many cases, this includes prior transfers of
code blocks or execution environments from mobile devices to
the offloading infrastructure. This approach incurs additional
latency and is detrimental for the energy consumption of the
mobile devices. In this paper, we propose the concept of a
microservice store. Using the microservice abstraction common
in software development and following the serverless paradigm,
we envision a repository through which said services are made
accessible to developers and can be re-used across applications.
We implement a proof-of-concept edge computing system based
on a microservice repository and demonstrate its benefits with
real-world applications on mobile devices. Our results show that
we were able to reduce latencies by up to 14x and save up to
94% of battery life.

Index Terms—edge computing, fog computing, microservices,
serverless, computation offloading, cyber foraging

I. INTRODUCTION

The growing number of mobile devices and new applica-
tions such as augmented reality make compelling use cases
for the deployment of close-by computing resources [1].
This trend of edge computing [2] or fog computing [3] has
gained much attention both in academia and industry and
consequently, a number of frameworks for edge computing
have been proposed. A crucial part of edge computing is
computation offloading, i.e., the remote execution of parts of
an application. Many previous works investigate offloading
approaches with varying granularity, e.g., code [4], threads
[5] or VMs [6], while others focus on the offloading decision
itself [7]. Common to all of them is the tight coupling between
mobile clients and the edge infrastructure. Code mobility is re-
alized by embedding the code and execution environment into
virtual machines or containers that have to be transferred from
the client to the surrogate that executes it. Besides the required
energy for the transmissions, these transfers add to the end-to-
end latency, i.e., the time it takes from the service request to
returning the result to the user. For devices like smartphones,
both of these factors are critical. Mobile users are often faced
with unreliable low-bandwidth mobile networks and limited
battery life. Performing traditional offloading hence has a
negative impact on these factors and thus affects the overall
quality of experience. In addition, current approaches do not
support the re-use of service across application boundaries
and therefore cannot use the overall resources efficiently.

In order to mitigate these drawbacks, we advocate the idea
of a microservice store. The microservice store is a repository
to which developers can submit their code in the form of

containerized applications. Developers of edge applications
can incorporate these services into their application with
the assurance that the code and execution environment will
already be available at the edge. We believe this will largely
simplify the development of innovative applications and en-
courage open source development. Client devices can request
the instantiation of microservices for application execution
and do not need to transfer code blocks and execution
environments to the edge computing node. This can be done
in two ways: (i) the client requests a specific microservice,
addressed by a unique identifier from the microservice store
or (ii) the client specifies a semantic description of the
desired functionality and the format of the inputs and outputs,
according to which an appropriate service will be instantiated
automatically. While the former allows for an informed choice
which microservice will be invoked, the latter enables develop-
ers to select a service solely based on the desired functionality.
Microservice instantiation can also be customized, e.g., by
overriding the default lifetime of the service. Microservices in
the store can therefore be thought of as a blueprint, which we
define by extending a common language for the orchestration
of cloud services. Through the re-use of services for different
applications, our approach also allows for a system-wide
management of resources, e.g., by deciding which services
are kept active, given request patterns from applications. To
this end, we implement a prototype system to showcase the
benefits of this concept and evaluate it using microservices
accessed from applications on a smartphone.

In summary, this paper makes the following contributions:
(i) We motivate the case for a new offloading mechanism
based on the paradigm of microservices that are made avail-
able through a repository called the microservice store. We
adapt a common language for cloud resource description to
our edge computing scenario to provide a standardized de-
scription of microservices. (ii) We provide a proof-of-concept
implementation that follows the paradigm of serverless com-
puting using common technologies for edge computing such
as container-based virtualization. (iii) Using three example
microservices, we show the benefits of our approach w.r.t.
latency and energy consumption. We further discuss archi-
tectural concerns for a wider-scale deployment, such as the
distributed nature of a microservice store.

II. THE APPROACH

We envision edge-enabled applications to rely on a reposi-
tory of microservices in order to avoid the (prior) transfer of
code and execution environments. Figure 1 contrasts these two



approaches of traditional computation offloading (Figure 1(a))
versus our proposed approach (Figure 1(b)). The individual
steps of our approach will be described in Section II-D.
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Figure 1. Comparison of offloading approaches

A. Characteristics of Microservices

Our offloading units are microservices, i.e., independent
parts of an application. These services carry out a single, yet
often computationally intensive task and can be composed
into more complex applications. From an operations point of
view, the individual services are developed and maintained
independently from the applications that use them. The bene-
fits offered by this approach have been widely acknowledged
[8], [9] and include increased scalability and maintainability,
which is crucial in dynamic edge environments.

B. Microservice Definition

In our system, a microservice is composed of its code and
meta information about the service and its target execution en-
vironment (e.g., a virtualization technology such as containers
or unikernels). The meta information is required to choose an
appropriate service and to manage the services in the edge
environment. We encapsulate both parts in a CSAR (Cloud
Service Archive) file, a standard package format. For the meta
information we extend TOSCA (Topology and Orchestration
Specification for Cloud Applications), an open OASIS' stan-
dard for cloud service descriptions. Those additions include
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the definition of microservices, in particular microservices
based on Docker containers and allow the definition of
properties like expected memory usage, the network ports
used by the microservice, its inputs and outputs, the alive
time, and the category of the microservice in the store, among
others. For Docker-based microservices, we also added a
new TOSCA group to define Docker bridge networks, which
the microservices can join. These properties are required
by both the client and the edge computing framework. The
former requires a description of the service and the latter
information about expected memory usage, port mappings
etc. to instantiate the service on edge nodes. An example
microservice description is shown in Listing 1.

Listing 1. TOSCA description of a microservice
tosca_definitions_version:
tosca_simple_profile_for_microservices_1_0_0
description: Template for a object detection application.
topology_template:
node_templates:
object_detection:
type: tosca.nodes.microservices.docker_container
properties:
id: 0d01
name: object_detection
container_port: 5000
mem_requirement: 1000
directory: object_detection
inputs: [ image |
outputs: [ image |
category: /image/object_detection
alive_time: 1800

The attribute alive_time defines the default time a microser-
vice should stay active on the edge agent. Contrary to common
serverless platforms, where the lifetime is either limited to
a single function execution or fixed by the provider (e.g.,
AWS Lambda currently has a maximum function lifetime
of 15 minutes), this default lifetime can be overridden by
the client in order to adapt it to the application. In addition,
we support the idea of polling to monitor a microservice’s
activity and prevent early shutdowns or unnecessary restarts.
The microservice can send an alive message to its agent to
notify it of its activity status. This message in turn resets
the alive timer of this microservice to prevent its automatic
shutdown, thus allowing for a more efficient use of resources
and avoidance of cold starts.

C. Microservice Store

The microservice store serves as the repository where
services are uploaded and made available by developers. An
entry for a microservice consists of a unique ID, the service
name, a description, the category of the service, the types of
its inputs and outputs, and the CSAR file. We model possible
categories as hierarchies. A category may be the child of a
parent category and the parent of several subcategories. For
example, the category of our object detection microservice
(see Section III-B) can be seen in Listing 1. This microservice
belongs to the category object_detection, which in turn is a
subcategory of the category image. The information about the
category, the inputs and the outputs are especially important
since they serve as the basis for our second microservice



addressing scheme that is based on the semantic description
and allows for an automatic selection of services.

D. Control Flow

The control flow of our system is outlined in Figure 1(b).
A client first issues a request for a service (step 1). The
microservice is then fetched from the store (step 2) and
instantiated on an edge agent (step 3). Alternatively, the
controller can omit the former two steps if this service is
already running. The controller then forwards the service
location (e.g., the IP and port number from which it can be
accessed) to the client (step 4). Because we want to decouple
the mobile device from the agent, requests for microservices
are sent to the controller. These requests are implemented as
REST calls and must contain the ID of the microservice or a
semantic description of a microservice. After receiving such a
request, the controller first decides on which of the available
edge agents to run the service. Afterward, a control protocol
established between the controller and the agent is used to
start the service. The agent then tries to start the microservice
with the provided information and replies to the controller
whether the start was successful or not. The controller then
forwards this information along with the service location to
the client.

Cold start vs. warm start: A cold start of a microservice
happens when the client wants to use a microservice that is
not yet running on an agent and therefore has to be transferred
from the store to the agent and then started on that agent. In
contrast, a warm start of a microservice happens when the
client wants to use an already running microservice. In this
case, the process of transferring the service from the store
and starting it will be skipped, i.e., step 2 and step 3 in
Figure 1(b), and the client will be informed about the running
microservice.

Addressing of services: Microservices can either be refer-
enced directly by their unique ID or semantically by matching
their category. In the latter case, the client has to provide
a semantic description consisting of a microservice category
from the store and a definition of inputs and outputs in their
request. Based on this information the controller selects a
matching microservice from the store and informs the client
if no matching service is found.

III. IMPLEMENTATION

We implement our approach described in an edge comput-
ing platform (Section III-A) and develop three microservices
to showcase it (Section III-B).

A. Edge Computing Platform

Our system consists of (i) a (logically centralized) con-
troller, to which clients submit a request for the execution
of a microservice, (ii) edge agents that run the containerized
microservices, and (iii) the microservice store. Controller and
agents are implemented as Python applications. The controller
exposes a REST-style API to clients in order to start microser-
vices and control their execution. The controller maintains

a list of edge nodes in the system and has a global view
on the system, including which microservices are currently
running on which nodes. For this, we implement the exchange
of control messages between the controller and the edge
agent. To parse the microservice descriptions, we adapt the
TOSCA parser from the OpenStack project’. The edge agents
consist of a Python application that maintains connectivity to
and exchanges information with the controller. In addition,
it controls the execution environment. We use Docker as
a lightweight virtualization for the execution environment.
The agent reacts to instantiation requests coming from the
controller. If the corresponding Docker image does not exist
on the agent yet, it will be built upon requesting the service.
Future invocations use the pre-built image unless the client
sends a force_rebuild flag. This is useful when using the
semantic invocation of services to ensure newer versions of
services are executed. Furthermore, clients are able to stop
microservices without removing them and restart stopped mi-
croservices as well. Microservice developers can use Docker
networking by defining Docker bridge networks, which the
microservices are able to use. This way, microservices running
on the same agent can be isolated from one another by joining
different bridge networks. The microservice store is realized
using MongoDB, a document-oriented database.

B. Demo Microservices

To evaluate our system, we develop three microservices.
We make them available for the research community?. All
microservices are implemented in Python, use Flask and
Bottle to implement a REST-based Web-API and are shipped
as Docker containers.

Object detection:  Using TensorFlow, we perform object
detection on an image captured by the phone’s camera. The
microservice returns the original image including the detected
objects, enclosed by rectangles and labeled with the name of
the object and the confidence value. The microservice code is
adapted from the TensorFlow Object Detection API* and we
use the ssd_mobilenet_vl_coco model trained on the COCO
dataset.

Face detection: Using OpenCV and a LBP Cascade
classifier, our second microservice detects faces in an image
and returns the original image with the faces enclosed by
rectangles.

Word count: Lastly, we use a simple word count application
that counts the number of words in a given text file.

IV. EVALUATION

In this section, we evaluate our microservice store approach
in comparison to traditional offloading and the local execu-
tion on a phone. We further discuss future challenges of a
microservice-style architecture for edge computing.

Zhttps://github.com/openstack/tosca-parser (Accessed: 2019-04-08)

3https://github.com/Telecooperation/flexEdge-microservices  (Accessed:
2019-04-08)

“https://github.com/tensorflow/models/tree/master/research/object_detection
(Accessed: 2019-04-08)



Download image Perform object detection

Step

Upload image Start microservice Step Perform face detection Start microservice Step Perform word count Start microservice
MS-Store ~ Offload | MS-Store  Offload MS-Store Offload | MS-Store Offload MS-Store Offload | MS-Store Offload
40000 900
2000~
2 30000
: 600
%)
g
w 20000
- 1000~
300
10000
0 W e orab - 0- 5 : ‘ . . . : : : : . . . ‘ ‘ ‘
cold warm  cold warm | cold warm cold warm cold warm cold warm | cold warm cold warm cold warm cold warm | cold warm cold warm
start start start start | start start start start start start start start | start start start start start start start start | start start start start
WiFi 4G WiFi 4G WiFi 4G

(a) Object detection

(b) Face detection

(c) Word count

Figure 2. End-to-end latency for the different microservices

A. Experimental Setup

As an edge node, we use a Lenovo ThinkCentre M920X
Tiny with an Intel Core i7-8700 and 16GB RAM running
Ubuntu 18.04. The edge node is connected via Gigabit
Ethernet to a Linksys WRT 1900 AC wireless access point
that at the same time serves as a 802.11nac gateway for the
mobile device. Besides WiFi connectivity, we also conduct
our experiments using a 4G mobile network with a theoretical
maximum bandwidth of 300/50 Mbit/s (down/up). The edge
controller and the microservice store are colocated on the
same machine, a Citrix Xen VM (AMD Opteron 6380, 8GB
RAM) running Ubuntu 16.04. This VM runs in the same
backend network as the edge node. As a mobile client device,
we use a Google Pixel 2XL phone (Qualcomm Snapdragon
835, 4GB RAM) running Android 9. We assume the mode
of operation in which microservices in the store are selected
based on their IDs.

B. Latency

First, we evaluate the end-to-end latency, i.e., the time
between the service request from the mobile application and
the receiving of the result. We plot the corresponding mean
values in Figure 2. Because of their different complexity
and size, we plot the results for the different microservices
individually. For our analysis, we split the overall execution
into two steps: The time it takes to start the microservice
and the actual task execution (including the transfer of input
and result data). For the object detection, we further split up
the second step into uploading the image to the microservice,
performing the object detection, and the download of the
resulting image to better analyze the impact of the individual
steps on the overall latency. Using our approach in the
warm start mode results in a reduction of the end-to-end
latency at the first step in all microservices compared to
the traditional offloading approach. Using a cold start, the
end-to-end latency reduction depends on the size of the
microservice. In our experiments, the CSAR file of the object
detection microservice is the largest at 28MB, while the face

detection and word count microservices are 12KB and 2KB
in size, respectively. In the traditional offloading approach,
the CSAR file has to always be transferred from the mobile
client to the controller, which explains the latency reduction
at the first step for the object detection microservice and
the comparatively smaller reduction for the face detection
microservice. In the case of the word count microservice,
our approach leads to a small increase in end-to-end latency
compared to the traditional approach using a cold start and
the 4G network. Instead of transferring the CSAR file, our
approach has to fetch the microservice from the store, which
induces a short delay as well. The results suggest that this
delay is comparable to the delay introduced by transferring
small CSAR files as is the case for the face detection and word
count microservices. The higher latency in the second step of
the face detection and word count microservices using the 4G
network in comparison to the WiFi network occurs because
the second step includes the transfer of an image or text file.
Overall, we see an average time reduction of 1.1-14 x for
microservice startup, depending on the microservice, the start
mode, and the type of network.

C. Energy Consumption

We now show how our approach saves energy on the mobile
device. We measure the energy consumption by using the read-
ings from the Android Battery Manager. In particular, we use
the property BATTERY_PROPERTY_CHARGE_COUNTER,
which provides us the remaining battery capacity. Figure 3
shows the results of the consumed battery power for a single
execution, averaged from all measurements. In general, the
results suggest a correlation between the end-to-end latency
and the consumed battery power. Similar to the results from
the latency evaluation, the energy savings depend on the
microservice and whether the service is invoked in cold
or warm start. Using the warm start, our approach results
in reduced energy consumption for all microservices. The
reduction depends on the size of the microservice. A larger
CSAR file size leads to a larger upload in the traditional
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approach, which in return requires more energy. Using a
cold start reduces the energy benefit of our approach, again
depending on the size of the microservice, which is especially
apparent when looking at the face detection and word count
microservices. In our experiments, our approach led to a
negligible increase in energy consumption (likely due to mea-
surement inaccuracies) for the special case of the word count
in cold start on WiFi. Comparing the differences between
cold starts and warm starts for the face detection and word
count services, we found that a warm start greatly reduces
the consumed battery power, while the latency reduction is
less substantial. As can be seen from Figures 2(b), 2(c), 3(b)
and 3(c), the warm start decreases the latency by about 50—
75%, while the battery consumption is decreased by about
80-95%. These results show that our approach is overall
beneficial for the user in the sense that it increases the battery
lifetime of mobile devices.

D. Microservice Store Location

In the previous experiments, the microservice store was
colocated at the edge controller. If we envision a large-scale
deployment of our system, we can make two observations:
(i) ideally we would not have a single controller, but a
(distributed) hierarchy of controllers, each one responsible for
one (geographic) region and (ii) the microservice store might
also be distributed and the individual instances not necessarily
colocated with the controller. We now measure the impact of
the store location on the latency. We consider the microservice
store to be (i) colocated on the controller, (ii) in the same
local network, and (iii) in two locations using Cloud services.
For the latter, we use AWS EC2 instances in the regions US
East and Ireland. Our location is in Darmstadt, Germany. The
results are shown in Figure 4(a). Depending on the size of
the microservice, the store location significantly affects the
invocation latency. While a store located in the same network
has a relatively small impact on the latency, using Cloud
services increases the latency by 33%-200%. Hence, for a
viable deployment, the microservice store should be close to
the controller and agents to not negate the benefits of our

offloading scheme. However, in practice, microservice store,
controller and agents would likely be well-connected via
wired networks, compared to more unreliable (and sometimes
metered) wireless networks that mobile clients use. Hence,
even with additional network hops to transfer the microser-
vices to the agents, our approach is beneficial for the overall
latency.
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Figure 4. Impact of the store location and local execution

E. Comparison with Local Execution

We now compare how a local implementation, i.e., an
alternative version of the service that runs directly on the
phone, performs against its counterpart executed on the edge
agent via the microservice store. The code for the local
execution is adapted from the TensorFlow Android Camera
Demo’. In this experiment, we use warm start execution
through WiFi and use faster_rcnn_inception_v2_coco as a
model. Figure 4(b) shows the result. Our approach leads to a
reduction in execution time of about 50%. Furthermore, the
consumed energy of the local execution is almost six times
higher than the consumed energy of the offloaded execution
through the microservice store.

Shttps://github.com/tensorflow/tensorflow/tree/master/tensor-
flow/examples/android (Accessed: 2019-04-08)



FE. Discussion and Future Work

Customization of services: One microservice can be imple-
mented and executed in different ways. For example, object
detections can rely on different trained models, each with vary-
ing complexity, accuracy, and resource requirements. For the
future development of our system, we envision the TOSCA
files to serve as blueprints for services. At invocation time,
users could specify the desired characteristics of the service.
Alternatively, in order to manage demands and resources, this
could be managed by the controller.

Chaining of microservices: In the case that one mi-
croservice directly takes as an input the result of another,
instead of passing the intermediate result through the client,
these microservices should be jointly orchestrated and ideally
executed on the same agent in order to avoid expensive
transfer of data.

QoS-awareness and guarantees: Current edge computing
frameworks do not include quality of service guarantees.
Especially in the case of chained services as outlined above,
we envision continuous monitoring of the entire execution
pipeline. This monitoring can serve as a basis to adapt the
service instances at runtime in order to meet QoS goals, e.g.,
by trading the quality of the computation.

Caching and pre-building of microservices: For a fully
distributed design of the microservice store, we need to
make decisions which services to cache at a location. Future
work should also investigate the tradeoff between cold-start
latencies and efficient resource usage. Depending on request
patterns, it might be beneficial to keep popular services warm;
however, idle services consume scarce resources on the edge
nodes.

V. RELATED WORK

Computation offloading or cyber foraging is the process
of remotely executing parts of an application. Sharifi et al.
[10] review this general concept and summarize research
challenges. Balan and Flinn [11] argue that challenges like
server setup and maintenance are still not solved. We believe
our approach at least partly frees developers from these
burdens, as our edge computing platform is responsible for
the instantiation and management of services. A variety of
offloading frameworks have been proposed. Common to all
them is that code—and in some cases the entire execution
environment—has to be transferred from the client device
to the surrogate. CloneCloud [12] automatically partitions
the application via dynamic profiling. Cuervo et al. present
MAUI [4], an offloading framework for mobile phones that
focuses on the energy benefit of offloading. Other works
operate on a thread-level granularity [5], focus on stream
processing applications [13] or propose parallel execution
[14]. Close to our work is Paradrop [15], a platform for
the dynamic orchestration of third-party services at the edge;
however they do not consider the aspect of energy savings
for the mobile device. Microservices are a way to develop
and deploy software as independent parts, in contrast to
monolithic software [8]. It is widely recognized that this

offers many benefits regarding DevOps [9]. The concept of
delivering microservices as containers has been suggested in
[16].

VI. CONCLUSION

In this paper, we presented our approach of a microservice
store as a contrast to common offloading techniques in edge
computing. Our evaluation based on real-world applications
such as object detection in images showed the benefits w.r.t.
reduced end-to-end latency and prolonged battery lifetime for
mobile devices.
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