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Abstract—We introduce an assessment framework for edge
computing applications. The framework allows developers to
measure the execution time of their applications in different
environments and generate a model for the prediction of ex-
ecution times. Based on these measurements and predictions,
better informed management decisions can be made for edge
applications.

I. INTRODUCTION

Mobile Edge Computing (MEC) [1], [2] and emerging 5G
networks allow users the usage of new mobile applications and
services with low latencies and high bandwidth. To achieve
this, computation resources in close proximity to users are
made available. Edge nodes in such an edge infrastructure are
typically equipped with heterogeneous hardware. In comparison
to cloud datacenters, such edge nodes are heavily limited
in their available computing resources. Because of these
characteristics, they also lack the ability to easily scale to
changing computing demands from users. In order to mitigate
these problems, edge applications can be migrated between
edge nodes. Furthermore, edge applications can offer multiple
versions of themselves with different performance requirements
[3]. Management decisions, such as where to migrate an edge
application to or which application version to use, require a
good estimate of application performance, especially a good
estimate of execution time.

In this paper, we present an assessment framework for edge
applications. It allows application developers to measure their
applications so that optimized management decisions can be
performed based on the measured application performance.
Furthermore, we study the accuracy of performance assessments
that are derived from previous measurements. We derive these
assessments via linear regression and can use it to acquire a
multitude of new application assessments without the need of
additional measurements.

II. THE ASSESSMENT FRAMEWORK DESIGN AND
IMPLEMENTATION

The assessment framework consists of (1) an execution
time measurement tool and (2) a model generator. In order
to obtain models with which a developer can automatically
assess their edge applications, they first need to provide the
assessment framework with some initial measurements of their
applications. To do so, the developer uses the measurement tool
provided by the assessment framework. They have to define
different environments in terms of hardware resources and

network conditions under which the application is then executed.
The measurement tool then measures the time required for
the execution of the application. These measurements will
be fed into the model generator to generate a model with
which the execution time of the application can be predicted
for unknown, not before seen requirements. Based on these
predictions, management decisions regarding migration and
version switching can be made to react to changes in the
execution and network environment. We expect the developer
to perform only a small number of initial measurements since
this step is an additional burden in the development process.
Even though the accuracy of the model increases with additional
measurements, we think that, in order to raise acceptance of
developers for our framework, the burden on them should be
minimized.
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Figure 1. Overview of the framework architecture

We implemented a prototype of our assessment framework
as an extension to FlexEdge, a container-based microservice
offloading framework for edge computing [4]. It allows users
to select one or several microservices from a microservice
repository that are then offloaded to and executed on an edge
infrastructure that is part of the system. Figure 1 illustrates an
overview of the framework architecture. We make use of the
Docker features of limiting the available memory and the cpu
resources a container can use to be able to provide applications
with different execution environments. In particular, we use
the Docker runtime options memory, cpu-period, and cpu-
quota [5] to constrain the available hardware resources of an
application. This way, the execution time of a microservice
can be measured under different hardware setups by limiting
the resources of its underlying container. Furthermore, this lets
us simulate multi-tenant deployments where each application



is allocated a fraction of the available hardware resources.
For each microservice, a message queue is created on which
the service receives its input and another queue to which the
service sends its output from where it can then be received by
the user. We define the execution time of a microservice as
the time from the receiving of its input to the sending of its
output. Accordingly, this time is measured in our prototype.
After the initial measurements have been performed, they will
be sent to the model generator of our assessment framework.
In our initial prototype, we use the ordinary least squares linear
regression from scikit learn [6] to generate a model.

III. EXPERIMENTS AND RESULTS

For our experiments, we measured the execution time of
a face detection microservice for a multitude of different
hardware resource constraints. In each of the measurements,
we set the parameter cpu-period to 100000 while setting the
parameters cpu-quota to values between 10000 and 200 000
and memory to values between 8 MB and 16384 MB. The
measurements were conducted on a Lenovo ThinkCentre
M920X Tiny with an Intel Core i7-8700 and 16GB RAM
running Ubuntu 18.04. To simulate a developer only performing
a small number of initial measurements, we used 20 of these
measurements to train a model using linear regression. In
particular, we used the measurements for memory values
of 8, 32, 128, 2048, and 16384 MB and for cpu-quota
values of 10000, 20000, 30000, and 50 000. Figure 2 shows
the measured execution times and the, via linear regression,
predicted execution times. Additionally, Figure 3 shows the
prediction error of the trained model for the 20 values that were
used to train this model as a heatmap. The prediction error
is calculated as the absolute difference between the measured
and predicted execution time. For the highest error, with a cpu-
quota of 10000 and memory of 8 MB, the measured execution
time is 13257 ms and the predicted time is 7831 ms. For the
lowest error, with a cpu-quota of 30000 and memory of 8
MB, the measured time is 4 187 ms and the predicted time
is 4009 ms. A model trained with 20 initial measurements
can result in execution time estimations which help in making
better informed management decisions for edge applications.
Our measurements have shown that increasing the cpu-quota
past 50000 does not yield a further decrease in execution time.
But since our model is based on linear regression, it predicts
for these cpu-quota values decreasing execution times, to the
point of negative execution time predictions. This reveals a
weakness of only performing well on a subset of all the possible
hardware resource constraints.

IV. OUTLOOK

In the previous section, we have shown our initial results
with our assessment framework and a simple model based on
linear regression. For our future work, we plan to extend our
prototype with additional methods to generate an execution
time prediction model. In particular, we want to include
polynomial regression and nonlinear regression and investigate
their performance. Furthermore, we want to investigate the
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Figure 2. Predicted and measured execution times for different Docker runtime
options
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Figure 3. Prediction error for different Docker runtime options

impact of the number of initial measurements we expect the
developer to perform. This is a trade-off between the burden
on the developer and the accuracy of the resulting model. To
better estimate the execution time of edge applications, we
want to extend our framework with additional features for the
model generation such as the availability of a GPU and the
size of the applications input. Both of these features influence
the execution time. Our prototype’s current predictions are
only valid for the hardware platform the measurements were
performed on. We want to investigate the possibility of
predicting the execution time for different hardware platforms.
In summary, this work shows the potential of our initial
prototype and with our planned work, we expect further
improvements to our framework.
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