
BigMEC: Scalable Service Migration for Mobile
Edge Computing

Florian Brandherm
Telecooperation Lab

TU Darmstadt
Germany

brandherm@tk.tu-darmstadt.de

Julien Gedeon
Telecooperation Lab

TU Darmstadt
Germany

gedeon@tk.tu-darmstadt.de

Osama Abboud
Huawei Technologies

Munich, Germany
osama.abboud@huawei.com

Max Mühlhäuser
Telecooperation Lab

TU Darmstadt
Germany

max@tk.tu-darmstadt.de

Abstract—
The proximity of Mobile Edge Computing offers the potential

for offloading low latency closed-loop applications from mobile
devices. However, to repair decreases in quality of service (QoS),
e.g., resulting from user mobility, the placement of service
instances must be continually updated – essential for mission
critical applications that cannot tolerate decreased QoS, for
example virtual reality or networked control systems. This paper
presents BigMEC, a decentralized service placement algorithm
that achieves scalable, fast, and high-quality placements by
making local service migration decisions immediately when a
drop in QoS is detected. The algorithm relies on reinforcement
learning to adapt to unknown scenarios and to approximate
long-term optimal placement updates by taking future transition
costs into account. BigMEC limits each decentralized migration
decision to nearby edge sites. Thus, decision computation times
are independent of the number of nodes in the network and
well below 10ms in our experimental setup. Our ablation study
validates that, using its scalable approach to decentralized
resource conflict resolution, BigMEC quickly approaches optimal
placement with increasing local view size, and that it can reliably
learn to approximate long-term optimal migration decisions,
given only a black-box optimization objective.

Index Terms—mobile edge computing, service migration, rein-
forcement learning, distributed algorithms

I. INTRODUCTION

Offloading computation and storage for closed-loop ap-
plications from mobile devices to cloud services offers
much potential to conserve devices’ production cost, battery
power, and weight [1]. Examples of such applications are
Virtual/Augmented Reality (VR/AR) [2], wearable cognitive
assistance [3], networked control systems [4], self-driving
cars [5], or video analytics for drones [6].

Despite substantial latency reductions in recent years, cen-
tralized cloud data centers may still be unable to deliver
the required reliable low latency for this type of application.
The reason is their physical distance to clients [7]. To offer
substantially lower latency to mobile users, there are currently
large efforts to augment cloud data centers with a network
of geographically distributed micro data centers at the edge
of the Internet, e.g., at 5G access points [8]. This computing
paradigm is referred to as Mobile Edge Computing (MEC).

A major challenge in MEC is to decide which edge site
processes which client’s services, as the relative inelasticity of
individual edge sites demands smart and location-aware load

balancing to resolve resource conflicts [9]. Further, to maintain
a high quality of service (QoS) for mobile users, the placement
of service instances must be continually updated [10] through
service migration.

Nevertheless, what ideal resource allocation and service
migration means and how it is achieved depends on the nature
of the edge application. Similar to the cloud, where a myriad
of different service models are offered for different use cases, a
wide variety of applications for MEC has been proposed with
vastly different requirements [11]. Thus, a variety of service
models and placement/migration schemes have been proposed.

Some works investigated stateless systems, where computa-
tions are scheduled on a request-by-request-basis. For example
Urgaonkar et al. [12] and Ma et al. [9] proposed mechanisms
that route requests either to an edge site, or to the cloud, while
simultaneously optimizing which applications are deployed on
which edge node. This deployment paradigm is related to
cloud-based serverless frameworks.

However, as noted by Hellerstein et al., the current server-
less offerings suffer from poor latency for storage access
[13]. The inelasticity and decentralization of MEC likely
exacerbate storage access issues [9]. Thus, the request-by-
request approach is not suitable for all types of applications,
such as applications that need dedicated resources or hold
client-specific state to provide continuous closed loop services.

Therefore the remainder of this article focuses on the
placement and migration of continuous client-specific service
instances, an approach that is followed by a large number of
works on service placement in MEC.

A. Overview of Existing Service Migration Methods

As many authors have recognized, long-term optimal migra-
tion decisions are advantageous in MEC because of clients’
mobility. An optimal placement configuration for a given point
in time might not be optimal in the long term. Consider, for
example, an autonomous car driving along a freeway. If the
objective is to minimize latency, then the optimal placement
location of its MEC service instances is not necessarily always
the edge site with the lowest round trip time. In reality, there
are migration costs that have to be factored in, e.g., a short
service interruption or the transmission of large amounts of
state data from one edge site to the next. Thus, such a naı̈ve

Julien Gedeon
Copyright 2022 IEEE.
Accepted paper at the Symposium on Edge Computing '22

strategy might not be optimal in the long term if the trade-off
between all future costs and benefits is taken into account.
A better strategy may be to migrate the service instances
further ahead in the direction of travel, and thus, lower the
required number of migrations. Future costs are much more
substantial in edge clouds than in centralized data centers,
where migrations are more predictable and migration costs
are much lower due to the fast interconnections.

Most works considering this need for anticipatory migra-
tion decisions have used Markov Decision Processes (MDPs)
to optimize placement decisions for the long term. Some
works solved the MDPs model-based, using provable online
placement algorithms [12], [14], or analytical solutions [15].
However, to become feasible, such solutions typically require
relaxations of the optimization objective [12] or very simpli-
fying assumptions about the system [15].

However, to compute model-based solutions to MDPs with-
out such problem simplifications requires good predictive
models for client mobility and network behavior. Therefore,
similar to related fields, such as job scheduling for the cloud
[16], [17], reinforcement learning has recently been embraced
for its ability to solve MDPs in a model-free way, adapting
to client mobility and other network events while treating
them as a black box. Model-free, learning approaches have the
additional advantage that they are more reusable because it’s
easy to change, e.g., the optimization objective (also treated
as a black box), without needing a manual redesign of the
optimization algorithm. Such flexibility is an important prop-
erty, since the objectives of service placement in upcoming
MEC deployments may be changing rapidly until established
infrastructure and business models exist.

One example of such a reinforcement learning based ap-
proach was given by Tang et al., where a reinforcement learn-
ing based policy determines which container should migrate to
which node [18]. However, while effective in small scenarios,
this approach scales badly, as the entire network state is used
as input for the neural network.

Many of these service migration mechanisms rely on cen-
tralized decision making [14], [15], [19], [20]. However, ser-
vice placement and migration are generally NP-hard. While the
proposed service migration mechanisms scale much better than
exact solutions, none of these mechanisms can scale to large
numbers of edge nodes with constant or near-constant place-
ment computation time. Besides the algorithmic complexity,
the communication with far away edge sites can hamper the
decision speed as sites’ distances from the central placement
decision maker increase.

These scalability issues are solved using decentralized ser-
vice migration mechanisms. For example, the reinforcement
learning based approach by Zhang and Zheng uses an MDP
formulation that would be highly scalable if deployed dis-
tributedly [21]. However, this is achieved by making decisions
for individual services with very limited input data and disre-
garding any resource conflicts. Gao et al. proposed to decide
for each service instance, where to migrate, disregarding any
nodes that are fully occupied [22]. Similarly, Brandherm et al.

used a single agent reinforcement learning method in a multi-
agent scenario [23], where each agent’s view of the network
is limited to its neighborhood. Although this approach is also
highly scalable, the used learning method tends to be unstable
in multi-agent settings. The above three mechanisms resolve
resource conflicts between service instances on a ”first come,
first served” basis. Yet, such non-prioritizing resource conflict
resolution can lead to degraded overall placement quality
if resources are saturated. This issue is further illustrated
in Section II-C and we propose a novel resource conflict
resolution mechanism for decentralized service migration in
Section II-D.

Alternatively, some decentralized service migration mech-
anisms with consideration for resource conflicts between
services have been proposed. One example is the work of
Abouaomar et al., where each MEC node uses a learned policy
to decide which services to host; a central node then resolves
any conflicts [24]. While the first part of this approach is fully
distributed, the centralized conflict resolution limits its scala-
bility. Another notable example is the work by Liu et al., that
introduced a multi-agent-learning-based placement mechanism
that, after training, allows each node to make independent local
decisions in constant time [25]. Nevertheless, the potential for
scalability is still not fully realized, as the used learning algo-
rithm, COMA [26], requires globally synchronous migration
decisions and a global state snapshot to compute a baseline
during training. Thus, resolving resource conflicts between
services in fully decentralized service placement for MEC has
remained a hurdle toward high scalability. In Sections II-D
and III-B, we propose a learning, asynchronous approach that
solves these remaining scalability issues by brokering resource
conflicts locally, without the need to learn this multi-agent
interaction.

B. Contributions

This paper studies learning decentralized service migration
mechanisms for offloaded services in MEC and presents
BigMEC, a novel decentralized migration mechanism with
three key innovations:

a) Local pre-selection of migration destinations: By
limiting each migration decision to a local pre-selection of
edge sites, BigMEC makes learning decentralized service mi-
gration strategies feasible for large-scale MEC infrastructures
(Section II-B). In Section IV-A, we show that this approach
can reach close to optimal solutions, despite considering only
a fraction of all edge sites for each decision.

b) Decoupling learning and agent-agent-interaction:
BigMEC addresses the stability issues of single-agent rein-
forcement learning in multi-agent scenarios through a sep-
aration of concerns: The learned policy deliberately ignores
all other agents, assuming a single-agent scenario that can
be learned reliably by single-agent reinforcement learning
methods (Section III-B). Resource conflicts between service
instances are then brokered decentrally by an agent interaction
policy that approximates a globally optimal trade-off between
the agents’ goals.

Table I
LIST OF KEY SYMBOLS AND NOTATIONS.

Symbol Description
�(i) state of � at time step i
G(i) graph of the underlay network
κ ∈ K edge site
σ ∈ Σ(i) service
x
(i)
σ,κ ∈ {0, 1} placement variable; 1 if, and only if σ at κ
κσ current edge site of service instance σ (i.e, x(i)σ,κσ = 1)
c

req
σ required number of CPU cores of service σ
cmax
κ / cavl

κ maximum/available CPU cores at edge site κ
N (i)
σ ⊆ K heuristic; probable migration targets for σ

sσ=
⋃
κ∈N (i)

σ
sκσ locally observable state information for σ

aκσ migration action: service σ to cloudlet κ
Q(sκσ , a

κ
σ) utility of executing aκσ , given sκσ

a ∈ A migration action sequence (aκσ , a
κ′
σ′ , . . .)

π(SN)→ A local service migration algorithm
Cfree
κ (c) utility cost of freeing c CPU cores from κ

C
disp
κ (aκσ) utility cost of displacing service σ to site κ

Dκ set of all possible displacement actions of
services at κ

Dmin
κ ⊆ Dκ set of displacement actions with lowest

combined Cdisp
κ (aκ

′
σ) that frees at least

cfree memory from κ; output of BigMEC
∆Q(sκσ , a

κ
σ) global utility gain of executing aκσ and the

displacement actions Dmin
κ to free space at κ

c) Displacement Mechanism: As the agent interaction
policy, BigMEC implements a novel decentral service dis-
placement mechanism (Section II-D) that allows to prioritize
the assignment of computation resources to service instances
and demonstrably (see Section IV-A) avoids the degradation
of placement decision quality in saturated situations in which
few or no resources are available.

II. DECENTRALIZED SERVICE PLACEMENT AND
MIGRATION

A. System Model

We model an edge network as a graph of network nodes.
Some nodes host an edge site which can each serve a limited
number of service instances.

a) Network: We model the physical network at a point
in time t(i) as a graph G(i) = (V (i), E(i)). The nodes V (i) =
U (i) ∪ K ∪ N of the underlay network are composed of a
set of mobile clients U (i) (e.g., mobile phones, IoT devices,
or connected cars), a set of nodes with edge sites K, and
a set of nodes without edge sites N . The undirected edges
E(i) = {〈u, v〉|u,v∈V } describe the network topology at time
t(i). The index i ∈ N enumerates time steps. For conciseness,
we omit the notation �(i) for variables that change over time
whenever possible.

Because mobile clients can join, leave, or change their
access point, the graph G(i) changes over time. We model
these changes as atomic transitions from a graph G(i) to
G(i+1), where exactly one of the following operations occurs:
a client (i) joins, (ii) leaves, or (iii) changes its access point.

b) Service Placement: Let Σ(i) denote the set of service
instances at time t(i). In an atomic transition Σ(i) to Σ(i+1),
a service instance can either be created or destroyed.

To specify at which edge site each service instance is placed,
we introduce a placement variable x

(i)
σ,κ ∈ {0, 1} for each

combination of service instance σ ∈ Σ and edge site κ ∈ K.
We define x(i)

σ,κ = 1 if and only if service instance σ is placed
at edge site κ. The entire placement configuration at time t(i)

can be summarized as matrix X (i) ∈ {0, 1}|Σ(i)|×|K|.
c) Placement Constraints: A service instance can only

be placed on a single edge site and every service instance
needs a set of dedicated resources, e.g., CPU cores, memory, or
GPUs. For simplicity and without loss of generality, we limit
ourselves to a single resource: the required number of CPU
cores creq

σ ∈ R+ (non-integer values allowed). The combined
CPU requirements of all instances at an edge site must not
exceed the available number of cores cmax

κ ∈ N. In other words,
the constraints

∀σ,
∑
κ∈K

x(i)
σ,κ = 1, (1)

∀κ,
∑
σ∈Σ

x(i)
σ,κ · creq

σ ≤ cmax
κ (2)

must always hold for any valid placement configuration. It
is straightforward to extend this model to multiple types of
resources, e.g., memory, by introducing additional constraints,
analogous to the CPU constraint (2). We use the notation cavl

κ

for the number of available CPU cores at edge site κ.
d) Service Migration: The placement quality of a service

instance can deteriorate due to client mobility or varying
network load. For example, the client could change its access
point, increasing network latency. Thus, whenever such a
change is detected for a service instance, e.g., through QoS
monitoring, a migration decision to re-evaluate its placement
is triggered immediately. Hence, the time t(i+1)−t(i) between
consecutive time steps i and i+ 1 is not fixed, but is the time
between two events that trigger service migration decisions —
migration decisions happen asynchronously. When triggered, a
service migration algorithm π(S)→ A computes a sequence
of migration actions a = (aκσ, a

κ′

σ′ , . . .) ∈ A, based on the
current state s(i) = (G(i),Σ(i),X (i)) ∈ S. In this notation,
aκσ denotes the migration of service σ from its current edge
site to edge site κ (if both sites are identical, no migration
is performed). All migration actions aκσ, a

κ′

σ′ , . . . are sequen-
tially applied to the placement configuration X (i). After each
migration, the placement constraints (1) and (2) must hold,
otherwise the sequence is invalid. After applying all migration
actions, time step i is followed by step i+1 with the next state
s(i+1) = (G(i+1),Σ(i+1),X (i+1)) at the time t(i+1) of the next
event that triggers a migration decision.

B. Decentralized Service Migration

The goal of our approach is scalability, i.e., to make good
service migration decisions quickly, regardless of the total
number of edge sites. We achieve this through decentralized
decision making, where each edge site is responsible to make

migration decisions on behalf of its hosted service instances.
Thus, each edge site’s migration decisions can be made locally,
which allows confining each decision to a local neighborhood
of edge sites (which may be defined in different ways). This
also means that migration decisions for an individual service
can be triggered locally, immediately when a change in QoS
is detected – migration decisions happen asynchronously.

The idea of confining migration decisions to nearby edge
sites stems from two observations: First, proximity is already
a good heuristic for service placement in edge computing.
Second, local service migrations are unlikely to strongly
impact further away service instances.

The principle of confining decentralized migration decisions
to a bounded set of nearby edge sites was introduced in our
previous work [23], where the possible edge sites to migrate a
service to were confined to the 10 closest sites in the network.
However, we found that this heuristic performs poorly for
the star topology typical of access networks, for which graph
distance is a poor approximation of geographical distance.
Therefore, we generalize the approach into confining migration
decisions to a set of candidate edge sites that can be selected
ad-hoc, based on the current context of the service instance to
be migrated, e.g., by considering the client’s current location.

A heuristic selects a set N (i)
σ ⊆ K of candidate edge

sites as possible migration destinations for service instance σ.
This candidate selection is performed anew for every service
migration decision, based on the state of the service instance,
its client, and its edge site. Ideally, this candidate set contains
the optimal migration destination with high probability.

Undoubtedly, a good heuristic for candidate sites aligns
well with the given optimization objective. For example, if
the goal is low latency, a good heuristic selects a set of edge
sites with the lowest expected latency to the service’s client.
The heuristic we have used in our experiments, denoted as
N (i)
σ,n ⊆ K, always includes the current site of the service

instance (always allowing instances to not migrate), a central
cloud node (always allowing instances to migrate away), and
the n− 1 cloudlets with the fewest number of hops from the
client’s current base station. If not otherwise stated, n = 10;
an investigation into the choice of n follows in Section IV-A.

We could imagine other heuristics to choose the set of
candidate sites N (i)

σ , but we leave their exploration to future
works. However, it is worth noting that the choice of N (i)

σ

can also be used to enforce hard placement constraints, e.g.,
by excluding all edge sites whose latency exceeds a threshold.

a) Decentralized Migration Decisions: Due to the se-
lection of a small set of suitable migration destinations, the
decision where to migrate a service instance only depends
on this small set of edge sites. In other words, migration
decisions of individual edge sites only depend on a subset sσ
of the global state s(i) that is visible within the set of nearby
candidate edge sites N (i)

σ .
Thus, the decentralized service migration policy

π(SN (i)) → A only depends on the observable state
sσ =

⋃
κ∈N (i)

σ
sκσ ∈ SN (i) within the candidate set N (i)

σ .

Algorithm 1 Decentralized Greedy Algorithm
1: # Trigger: service instance σ affected by QoS change.
2: # Executed on κσ , the current edge site of σ:
3: function GREEDY(σ, κσ)
4: for all κ ∈ N (i)

σ \ κσ do
5: if cavl

κ ≤ creq
σ then

6: sκσ
from κ←−−−− GETSTATE(κ, σ)

7: # greedy migration decision:
8: κdst ← argmax

κ∈N (i)
σ

Q(sκσ, a
κ
σ)

9: execute migration action aκ
dst

σ

Therefore, only a small, bounded subset of the system’s state,
which is available nearby, is required for each migration
decision—making the computation and communication time
of each migration decision bounded and independent of the
overall size of the network.

b) Migration Action Utility: Out of the set of candidate
edge sites to migrate a service instance to, the most advanta-
geous site must be chosen. To decide which migration action is
best in a particular situation, a utility function Q(sκσ

(i), aκσ
(i)),

quantifies the utility of migrating service instance σ from its
current edge site to candidate site κ ∈ N (i)

σ . If κ refers to
the current site of σ, it quantifies the utility of not migrating.
The utility depends on (i) the migration action in question
aκσ

(i) (i.e., the destination edge site κ), and (ii) the locally
observable state sκσ

(i) of the service instance σ (including its
client). The utility can be thought of as the opposite of a cost
function and captures the overall long-term costs and benefits
of the migration execution and the new placement location. For
now, we assume the utility function Q(sκσ

(i), aκσ
(i)) to be given.

However, it is much easier to define myopic cost functions
that assess only the value of migrations/non-migrations at
the current instant of time, than creating a good model for
their long-term values, considering all possible future, yet
unknown, events. Therefore, in Section III, we propose using
reinforcement learning to automatically derive good long-
term utility functions from easy to hand-define myopic cost
functions.

The optimization objective at each step is to maximize the
summed utilities of all service migration actions (including
the utilities of service instances that were not migrated).
Nevertheless, computing the optimal global solution is an NP-
hard combinatorial optimization problem and is only feasible
in a centralized architecture that has a global view. Hence, we
only approximate the optimization objective.

C. Decentralized Greedy Algorithm

A naı̈ve approach to such a decentralized service migration
algorithm is to always greedily migrate service instances to
the edge site that yields the highest utility (see Algorithm 1).
However, as in similar previous approaches [21], [23], service
instances cannot be migrated to edge sites with insufficient free
resources, due to the lack of a mechanism to resolve resource
conflicts. Although this greedy algorithm meets the scalability

Greedy
Migration κ1 κ2 κ3

A B

Q(s
κ�
A , a

κ�
A) 30 40 30

B
blocked by B

A

Q(s
κ�
B , a

κ�
B) 10 30 10

A
blocked by A

B

Figure 1. If all good migration destination sites are occupied, service instances
cannot migrate in the greedy algorithm. To maximize utilities globally,
instance A should migrate to κ1 to free space for the more important instance
B. Yet, there is no incentive to do so from the local view of either instance.

goal, allocating resources on a first come, first served basis
causes two problems that lead to placement inefficiencies:

a) Resource Saturation: If demand in an area exceeds
the available MEC resources, the system becomes locally satu-
rated, meaning that little to no unoccupied resources are avail-
able nearby. Hence, service instances’ migration candidate sets
N (i)
σ do not contain any edge sites that can accommodate it

besides the current site. Thus, service instances can become
immobile, as illustrated in Figure 1. Localized saturation is
likely to occur in dense MEC deployments, e.g., in flash
crowd events, or if an area is under-provisioned. Although
including a virtually unlimited cloud in every N (i)

σ always
enables migrating away, the QoS characteristics of any edge
site are likely to be preferred to those of a central cloud. Thus,
if (i) there are no free resources within the local area at the
edge, and (ii) migrating to the cloud is not advantageous for
any service instance, no service instance has an incentive to
migrate and all service instances are immobilized until a client
leaves the saturated area.

b) Lack of Resource Prioritization: MEC services differ
in their performance objectives and their importance [11]. We
encode this in the utility function. For example, a safety-
relevant service for autonomous vehicles requires lower la-
tency and higher availability than a service that improves
advertisement delivery, and thus, obtains a much higher utility
from edge sites. Nevertheless, the greedy approach has no
mechanism to assign resources to those services that gain the
highest utility from them in the greedy approach. Instead,
resources are allocated on a first come, first served basis.
Allowing service instances to displace instances that profit less
from their occupied resources is the intuitive solution to this
problem. However, this is not trivial, since it might not be
worth displacing a service instance from the global perspec-
tive, e.g., if displacing an instance with lower utility would
incur a substantial migration cost to it and the alternative is
to migrate to an unoccupied site with slightly worse utility.

Displacing
Migration κ1 κ2 κ3

A B

Q(s
κ�
A , a

κ�
A) 30 40 30

C free
κ2

=

40− 30 =10

A

Q(s
κ�
B , a

κ�
B) 10 30 10

B
∆Q =

30− 10− C free
κ2

=10

B
∆Q = 0

Figure 2. In the greedy algorithm, the presence of instance A prevented
service instance B from migrating to κ2 which is globally suboptimal.
However, including Cfree

κ2
, the global gain in utility ∆Q of migrating A to κ1

and B to κ2 is higher than not migrating B (not displacing A).

D. BigMEC: Displacing Service Instances

To eliminate the above inefficiencies of the greedy approach,
we introduce BigMEC, a refinement of the above greedy algo-
rithm that allows the displacement of other service instances
if it increases the global sum of utilities. Algorithm 2 lists the
complete algorithm that is described in the following. With the
greedy algorithm, a migration destination that would lead to a
large gain in utility for one service instance can be occupied by
another instance that would only incur a small loss of utility
by migrating away (see Figure 1). However, by considering
the combination of these two migration actions together, (i.e.,
adding the large utility gain of the first service instance to the
small utility loss of the second instance) the global sum of
utilities can be improved.

We denote this gain in global utility ∆Q(sκσ, a
κ
σ) =

Q(sκσ, a
κ
σ) − Q(sκσσ , aκσσ) − C free

κ (creq
σ), where Q(sκσ, a

κ
σ) −

Q(sκσσ , aκσσ) is the gain in utility of migrating service instance
σ from its current edge site κσ to another site κ, and
C free
κ (creq

σ) is the minimum utility cost to free enough resources
at the destination site κ. Thus, for a no-migration action,
∆Q(sκσσ , aκσσ) = 0. We have depicted an example of this basic
principle in Figure 2.

The set of all possible migration actions that must be
considered for displacement from a destination site κ is
Dκ = {aκ′σ |σ ∈ Σκ, κ

′ ∈ N (i)
σ \ κ}. In other words, it is

necessary to determine the utility costs of displacing every
service instance at the destination site κ to every one of its
destination site candidates, in order to then determine the most
advantageous combination of displacement actions Dmin

κ ⊆ Dκ

as follows.
The cost of an individual displacement action is Cdisp

κ (aκσ) =
Q(sκσσ , aκσσ) − Q(sκσ, a

κ
σ), the difference in utility between

leaving service instance σ at the current edge site κσ , and
migrating it to the destination candidate κ. Finally, the mini-
mum cost to free up creq

σ CPU cores at site κ is C free
κ (creq

σ) =∑
aκ′σ ∈Dmin

κ
Cdisp(aκ

′

σ), the combined utility costs of all dis-
placement actions in the set Dmin

κ .

However, potential resource conflicts between the service
instances associated to displacement actions in Dκ complicate
finding Dmin

κ . Given the required amount of CPU capacity to
free creq

σ , this leads to a constrained optimization problem

Dmin
κ =argmin

D̂κ⊆Dκ

∑
aκ
′
σ′∈D̂κ

Q(sκσ′ , a
κ
σ′)−Q(sκ

′

σ′ , a
κ′

σ′)︸ ︷︷ ︸
Cdisp(aκ

′
σ′)

, (3)

s.t. ∀κ ∈ K : cmax
κ ≥ cavl

κ +
∑

aκ
′
σ′∈D̂κ

δκ,κ′ · creq
σ (4)

and creq
σ ≤ cavl

κ −
∑

aκ
′
σ′∈D̂κ

creq
σ , (5)

where the set of displacement actions with the lowest com-
bined utility cost (Equation (3)) must be selected, subject
to the following constraints. First (Equation (4)), no target
edge site’s CPU capacity can be exceeded after executing all
displacement actions (δκ,κ′ = 1 if κ = κ′, else δκ,κ′ = 0).
Second (Equation (5)), all displacement actions together must
free enough CPU capacity (more than the required creq

σ)
This optimization problem is equivalent to a Knapsack

problem and can be approximated by one of many approxi-
mation schemes. For simplicity, we chose to approximate this
optimization problem with a greedy packing heuristic. First,
the cost per CPU core Cdisp

κ (aκ
′

σ)/creq
σ is computed for each

displacement action. Then, until there are no actions with
negative cost per core left and the required amount creq

σ is
freed (see Equation (5)), the action with the lowest cost per
core is added to Dmin

κ . However, an action is only added if it
doesn’t conflict with any action already in Dmin

κ for resources
(see Equation (4)). This strategy also ensures, that viable
displacement actions with negative cost (i.e., displacement is
actually desired), are always executed, even if that means
freeing more resources than necessary. Lines 26 to 44 of
Algorithm 2 summarize the above packing heuristic.

a) Extension to Multiple Types of Resources: As
mentioned before, the system model can easily be extended
to consider multiple types of resources, say, memory, storage,
or GPUs. To extend BigMEC to multiple resource types,
(i) constraints analogous to Equations (4) and (5) must be
added to extend C free

κ (·) to multiple resources, and (ii) a
different packing heuristic (see line 26 to 40 of Algorithm 2)
must be implemented, as the Knapsack problem becomes
multidimensional.

The displacing behavior solves the efficiency problems of
the greedy first come, first serve approach (see Section IV-A).
Even though no service instance might benefit from migrating
to the cloud in a saturated area, service instances can be forced
to free edge resources for other instances that yield higher
utility from them.

It seems natural to extend the algorithm with recursive
displacement so displaced service instances can displace
others themselves. However, recursion quickly becomes
infeasible due to an explosion of potential resource conflicts:
Conflicts arise not only between displaced service instances

Algorithm 2 BigMEC
1: # Trigger: service instance σ affected by QoS change.
2: # Executed on κσ , the current edge site of σ:
3: function BIGMEC(σ, κσ)
4: for all κ ∈ N (i)

σ \ κσ do
5: C free

κ , Dmin
κ

from κ←−−−− FREERESOURCES(κ, creq
σ)

6: sκσ
from κ←−−−− GETSTATE(κ, σ)

7: ∆Q(sκσ, a
κ
σ)← Q(sκσ, a

κ
σ)−Q(sκσσ , aκσσ)− C free

κ

8: ∆Q(sκσσ , aκσσ)← 0
9: Dmin

κσ ← ∅
10:
11: # migrate σ to the destination site with max. ∆Q:
12: κdst ← argmax

κ∈N (i)
σ

∆Q(sκσ, a
κ
σ)

13: execute all displacement actions aκ
′

σ′ ∈ Dmin
κdst

14: execute migration action aκ
dst

σ

15:
16: # Returns C free

κ (mreq) and the corresponding Dmin
κ .

17: # Executed on κ, the edge site in question:
18: function FREERESOURCES(κ, creq

σ)
19: if creq

σ ≤ cavl
κ then # already enough space?

20: return (C free
κ = 0, Dmin

κ = ∅)

21: # 1) compute costs of all possible displacements:
22: for all σ ∈ Σκ do # for all service instances at κ
23: for all κ′ ∈ N (i)

σ (sκσ) \ κ with cavl
κ ≥ creq

σ do
24: sκ

′

σ
from κ′←−−−− GETSTATE(κ′, σ)

25: Cdisp
κ (aκ

′

σ)← Q(sκσ, a
κ
σ)−Q(sκ

′

σ , a
κ′

σ)
26: ρκ

′

σ ← Cdisp
κ (aκ

′

σ)/creq
σ # cost density

27: # 2) greedily select displacement actions for Dmin
κ :

28: c← 0 # total freed CPU cores
29: C free

κ ← 0 # total cost of freeing CPU cores
30: Dmin

κ ← ∅ # set of migration operations
31: Σmigrated ← ∅ # set of migrated service instances
32: for all σ, κ′ in ascending order of ρκ

′

σ do
33: if c > creq

σ ∧ ρκ
′

σ ≥ 0 then
34: return (C free

κ , Dmin
κ) # freed enough cores

35: if σ /∈ Σmigrated then
36: if cavl

κ ≥ creq
σ +

∑min
aκ
′′
σ′ ∈Dκ

δκ′,κ′′c
req
σ′ then

37: # ensured there are no resource conflicts
38: c← c+ creq

σ

39: C free
κ ← C free

κ + Cdisp
κ (aκ

′

σ)
40: Dmin

κ ← Dmin
κ ∪ {aκ′σ }

41: Σmigrated ← σ

42: if c > creq
σ then # success: found a valid Dmin

κ

43: return (C free
κ , Dmin

κ)
44: else # failure: impossible to free enough resources
45: return (C free

κ =∞, Dmin
κ = ∅)

originating from one site, but also between instances
originating from other simultaneous displacement processes.
A recursive variant only appears feasible in two special cases
that are not realistic in MEC scenarios: The first case is
that all service instances require the exact same amount of

resources, and thus, there is exactly one instance to displace
at every recursion depth. The second case is that only a very
low number of service instances fit on one edge site, again
limiting the number of options to displace other instances.
Besides, our experiments revealed that non-recursive BigMEC
already performs close to an exact solution (see Section IV-A).

III. LEARNING LONG-TERM UTILITY FUNCTIONS

In the introduction, we have stated that it’s important to
optimize migrations for the long term, and thus, the question
that needs to be answered is ”Are the migration costs now
worth the benefit of a better placement later?”. To answer
it, the utility Q(sκσ, a

κ
σ) must be defined by a model that

estimates the expected value of the migration action aκσ (and
its consequences) over the foreseeable future. Such a model
is difficult to define by hand, as it would require accurate
predictive models about the environment, e.g., the clients’
movement patterns (unknown a priori). Fortunately, reinforce-
ment learning is a proven tool to estimate an environment-
adapted model of the the utility Q(sκσ, a

κ
σ) by observing the

long-term effects of migration decisions “in the wild”.

A. Markov Decision Process

To formally express the long-term utility function Q(sκσ, a
κ
σ)

for one service instance σ, we define a Markov Decision
Process (MDP) from the local perspective of service instance
σ. An MDP is a framework for modeling decision making
using a sequence of states, where each state transition decision
is based only on the current state. The MDP of a service
instance σ is defined by a tuple (Sσ,Aσ,Rσ, T), where
Sσ is the state space and includes all possible states that

service instance σ could encounter in its local view N (i)
σ .

However, those states must not contain any information
about other service instances, for reasons described later
in this section.

Aσ is the action space and includes all possible migration
actions to edge sites in N (i)

σ that service instance σ may
have to consider.

Rσ : Sσ×Aσ → R is the myopic reward function of service
instance σ and returns the immediate reward (= negated
myopic cost) after executing an action. This includes both
the cost of being placed at the current edge site and the
cost of migrating (if applicable). Since this reward/cost
function is determined by the MEC operator according to
its specific pricing/business model, we consider it to be
a black box and unknown a priori. Hence, our approach
is flexible regarding the cost model.

T = P
(
sσ

(i+1)
∣∣∣sσ(i), aκσ

(i)
)

is the probabilistic transition
function that represents transitions from one state to the
next, i.e., it encompasses all external events between
two migration decisions. Since the probability distribution
of events in the real world, such as client mobility, is
difficult to model by hand and can differ from region to
region (e.g., urban vs. rural), we consider the transition
function a black box as well. Reinforcement learning

allows BigMEC to adapt to such unknown or changing
environments.

In this MDP, we define the optimal long-term utility function

Q∗(sκσ, a
κ
σ) = Eπ∗

 ∞∑
j=0

γjRσ
(
sσ

(i+j), aσ
(i+j)

)∣∣∣∣∣∣s(i)σ :=sκσ,

a(i)σ :=aκσ

 ,
which is the expected discounted sum of rewards over all fu-
ture time steps, assuming all actions are chosen by the optimal
policy π∗ = argmaxπ Eπ

[∑∞
k=0 γ

jRσ
(
sσ

(i+j), aσ
(i+j)

)]
,

the policy that achieves the highest expected long-term re-
ward. How Q∗(sκσ, a

κ
σ) is estimated trough trial and error via

deep Q-learning is explained in the next Section III-B. In
reinforcement learning parlance, Q∗(sκσ, a

κ
σ) is also known as

the optimal state-action value function, or optimal Q-function.
It is important to note that the MDP we have just defined

implies that, given the optimal utility function Q∗(sκσ, a
κ
σ),

the optimal policy is π∗(sκσ) = aκσ = argmaxaκσ Q
∗(sκσ, a

κ
σ),

i.e., the optimal policy of this MDP acts greedily, always
selecting the action with the highest utility. However, unlike
the greedy algorithm which has no mechanism to resolve
resource conflicts, BigMEC does not act greedily with regards
to Q∗(sκσ, a

κ
σ), but employs its displacement mechanism to

explicitly resolve resource conflicts between service instances.
Yet, it requires the above MDP definition, defined under the
pretense that no other service instances exist. The reason is that
the utility cost of displacing or blocking other service instances
is already explicitly scrutinized in BigMEC and must not be
considered a second time in Q∗(sκσ, a

κ
σ). That implies that any

influence of other service instances on Q∗(sκσ, a
κ
σ) must be

avoided, and thus, the state must not include any information
about other instances.

This separation of concerns into (i) estimating the long-term
value of a single service instance migration, and (ii) resolving
conflicting interests between instances also means that our
approach effectively avoids a competitive multi-agent learning
scenario. If other service instances were part of the above
MDP, the optimal greedy policy would have to consider their
presence and actions in its decisions, i.e., it would incorporate
these factors into the optimal utility function Q∗(sκσ, a

κ
σ). This

inter-dependency of agents’ decisions in multi-agent scenarios
is a very difficult problem for reinforcement learning, since it
creates a feedback loop between agents’ current behavior and
the optimal strategy to exploit that current behavior. Using
non-multi-agent methods that disregard other agents1 leads
to instability (i.e., service instances continuously trying to
outsmart each other’s strategies). Unfortunately, multi-agent
reinforcement learning (MARL) methods scale poorly due to
the curse of dimensionality [27]. Our novel approach circum-
vents the challenges of multi-agent-systems and allows the use
of standard (non-MARL) reinforcement learning approaches.

B. Reinforcement Learning to Estimate Long-Term Utilities
Reinforcement learning refers to methods for estimating

optimal policies for MDPs with unknown transition functions

1this approach is called independent reinforcement learning

and reward functions through trial and error [28], [29]. In
value-based methods, the optimal state-action-value function
(i.e, the optimal long-term utility function) Q∗(sκσ, a

κ
σ) is

approximated. For large state-action spaces, Q∗(sκσ, a
κ
σ) cannot

be represented by a lookup table of all possible state-action
pairs, and thus, has to be represented by an approximation,
e.g., a neural network. In the following, we denote the neural
network as Qθ(sκσ, a

κ
σ), where θ represents the network param-

eters. In our experiments, we have used a densely connected
feed-forward network with 3 hidden layers of width 20. These
and the following hyper-parameters of the learning method
were found through a manual hyper-parameter search.

Our learning approach has a distributed architecture, in-
spired by the parallel asynchronous reinforcement learning
methods first introduced by Mnih et al. [30]. Figure 3
conceptualizes how reinforcement learning is integrated into
BigMEC. The Q-network Qθ(s

κ
σ, a

κ
σ) is deployed on each

edge site, where it is used to estimate the long-term utili-
ties of outgoing migration decisions within BigMEC. After
each invocation of BigMEC for a service instance σ, with
probability precord (in our case precord = 0.0125) the recorded
experience (i.e., the decision inputs and outputs) is archived in
an experience buffer. This means that the following is inserted
into the experience buffer of a central learner (FIFO queue,
limited to 100.000 elements): (i) the state sσ(i), (ii) the chosen
action aκσ

(i), (iii) the resulting reward rσ(i) = Rσ(sκσ
(i), aκσ

(i)),
and (iv) the following state sσ(i+1). After every 100 recorded
experiences (sσ

(i), aκσ
(i), rσ

(i), sσ
(i+1)), a central learner

trains the neural network with a random sample of 1000
experiences from the experience buffer, and then disseminates
the updated neural network parameters θ′ among the edge sites
(inspired by [30]). Once the training process has converged,
the central learner can be turned off. However, continuous
online training is also possible. Contrary to the state-of-the-
art multi-agent learning methods that need a central critic,
BigMEC scales well during training, since migration decisions
and training are asynchronous, and thus, training does not
affect edge sites’ decision rate.

To approximate the optimal utility function Q∗(sκσ, a
κ
σ), we

used Clipped Double Q-learning [31], which is a state of the
art reinforcement learning technique for neural network Q-
functions. There is only one modification of the technique for
BigMEC, as described in Algorithm 2: Instead of greedily
selecting the action with the highest utility (see line 10 of
Algorithm 1), the policy acts according to BigMEC, greedily
selecting the actions with the highest global gain in utility
∆Qθ(s

κ
σ, a

κ
σ). Using a different policy than greedy action-

selection is possible because Q-learning is an off-policy algo-
rithm, i.e., the acting policy can differ from the learned policy
π∗ (which pretends that no other service instances exist).

Learning can only occur if new strategies are explored, i.e.,
if the actions are not strictly chosen according to BigMEC,
but randomized to a degree. This is realized by replacing the
greedy action selection in line 12 of Algorithm 2 (and line
8 of Algorithm 1) with an ε-greedy action selection. With
probability ε, a random action is chosen instead of the greedy

κi

κ2κ2
. .

.
κ1

Qθ

Only during
training

Learner

Parameters θ

Reward r Action a
States s ,...,s

σ
κ

σ
κ1

σ

Environment

. .
.. .

.

Action aσ
κ

BigMEC

σ
κi

Experience
Buffer

Figure 3. Centralized learning for distributed BigMEC.

decision:
1: if RANDOM(0 . . . 1) < ε then
2: κtarget ← RANDOMCHOICE(N (i)

σ)
3: else
4: κtarget ← argmax

κ∈N (i)
σ

∆Q(sκσ, a
κ
σ)

For our experiments, we used ε = 0.05 while training and
ε = 0 for the evaluation.

The reason for storing only a subset of the experiences is
to be able to sample data over a longer period (storing all
experiences at precord = 1 quickly becomes a bottleneck),
making the learned utility functions generalize better. The
sampling rate precord must be balanced with the size of the
experience buffer and number of edge sites in the system.
Due to the low sampling rate, online training becomes feasible
with negligible negative impact from exploratory (random)
behavior – only the recorded decisions must be subjected to
the ε-greedy action selection, i.e. only one out of 1

ε·precord (in
our case 1

0.05·0.0125 = 1600) decisions must be randomized
for sufficient exploration.. Although we have used a central-
ized learner for simplicity, it could be replaced by federated
learning architectures in the future [32]. Although federated
learning is typically not entirely decentralized either, it could
be advantageous to process more training data and to let each
edge site specialize to its location.

IV. EXPERIMENTS

We have evaluated BigMEC in a large scale simulation and
performed an ablation study investigating the impacts of the
displacing strategy (Section IV-A) and the learned long-term
utility (Section IV-B). To this end, we have analyzed the global
cost (i.e., placement quality) and the number of migrations
triggered by BigMEC in comparison to the greedy baseline
algorithm, a no-migration policy, the exact, globally optimal
solution, and the exact solution where the migration options
are restricted to the same set of destination site candidates
N (i)
σ as the local approaches. The exact placement solutions

were calculated in one second intervals using the state of the
art Gurobi ILP solver2. As it is infeasible to calculate exact
solutions for long-term optimal placement, all exact solutions
are myopic, i.e., they disregard any future effects of their
placement decisions.

Cloud

Figure 4. Simulation area and network topology.

a) Simulation Setup: For the sake of realism, we have
used real-world data sets as much as possible. Nevertheless,
there are still open questions that could have a major impact
on real-world results, e.g., the business model that defines the
objective function, or which virtualization technology will be
used. However, since BigMEC was designed to be flexible
regarding these open questions, the insights of our analysis
are still valuable.

To simulate the clients’ movements, we have used a one-
day time slice of the cabspotting data set [33], which contains
mobility traces of roughly 500 taxi cabs in San Francisco. For
the wireless access point locations, we have used the coordi-
nates of all LTE base stations of one mobile network operator
in the San Francisco area, which we have gathered from the
crowd-sourced database of OpenCellId3. The simulated area
contains 1999 base stations. We have modeled the access
network as a 2-tier hierarchical star topology (see Figure 4),
as is typical for today’s cellular networks. In reality, the end-
to-end latency of an MEC service instance depends on many
factors, such as the transmitted data volume, transmission de-
lay, background traffic, congestion, protocol etc. Thus, latency
would be measured end-to-end in a real-world deployment. As
many of those factors are currently unknown due to the lack of
MEC infrastructure and applications, we have conservatively
assumed that each link of the access network adds 1 ms of
end-to-end latency. We have also assumed that edge sites
are deployed sparsely. Some are deployed at a base station,
whereas others are deployed at aggregation sites. There are
50 edge sites at random nodes in the mobile network, i.e.,
their geographical distribution corresponds to the distribution
of access points, which is in line with demand. Also, there is
one nearby cloud node with a latency of 10 ms from the root of
the hierarchical access network. If not otherwise stated, the set
of possible migration destinations N (i)

σ,10 of a service instance
σ comprises its current edge site, the 9 sites with the fewest
number of hops to the instance’s client plus the central cloud.
Since the discovery of edge resources from the client device
is an ongoing field of research [34] and beyond the scope
of this work, we start each new service instance at the cloud

2https://www.gurobi.com/
3https://www.opencellid.org/

greedy exact (using N (i)
σ,10) no migration

BigMEC optimal

200

250

300

350

m
ea

n
co

st
C

1

0:00 6:00
12

:00
18

:00
24

:00

101

102

m
ea

n
m

ig
ra

tio
ns

/s
(l

og
ar

ith
m

ic
)

(a) higher saturation,
resource demand 118% of available

edge resources

200

250

300

350

m
ea

n
co

st
C

1

0:00 6:00
12

:00
18

:00
24

:00

101

102

m
ea

n
m

ig
ra

tio
ns

/s
(l

og
ar

ith
m

ic
)

(b) lower saturation,
resource demand 59% of available

edge resources

Figure 5. Greedy algorithm compared to BigMEC, using a manually defined
utility function. The cost function C1 contains no migration cost.

and immediately trigger a migration decision to determine its
best placement. Because BigMEC and the greedy algorithm
are affected by random seeds, we have always simulated and
plotted them four times to show the randomization’s effects.

A. Service Instance Displacement

To analyze the displacement mechanism of BigMEC in
isolation from the effects of reinforcement learning, we have
first evaluated it with a manually defined myopic utility
function instead of learning the long-term utility. Our setup for
this experiment is as follows: Each edge site has 20 CPU cores,
whereas the cloud has practically infinite resources. There is
one service instance per client and their CPU requirements are
uniformly distributed integers between 1 and 4. Thus, each
edge site can host 5 to 20 service instances simultaneously,
which we believe is realistic for container-based services.
Since there are up to 471 simultaneous clients in the data set,
the MEC system is saturated – at peak demand, the combined
resource requirements of all services exceed the available
resources at the edge by 18%. To compare this to a less
saturated scenario, we have conducted a second experiment
where we have doubled the edge site capacities to 40 CPU
cores, meaning that only up to 59% of the available edge
resources are needed.

The manually defined utility function

Q(sκσ, a
κ′

σ) := −C1(aκ
′

σ) = −pσ · λσ@κ′

is determined by the importance-weighted service latency,
where pσ represents the importance of σ, and λσ@κ′ is the
latency of the service instance if placed at the destination site
κ′. To simulate heterogeneous services, each service instance
has been assigned a random importance value pσ between 1
and 100. The inverse of the utility, C1, is the cost function used
to assess performance over a 1s time interval: the mean cost of
all migration and (explicit as well as implicit) non-migration

N (i)
σ,0 N (i)

σ,10 N (i)
σ,20 N (i)

σ,30 N (i)
σ,40 N (i)

σ,50

200

300

400

500

(global view)

m
ea

n
co

st
C

1 greedy BigMEC optimum
exact no migration

Figure 6. Global cost C1 achieved by different myopic methods for different
sizes of N (i)

σ,n (scenario with higher saturation).

actions. Minimizing C1 is also the optimization objective of
the exact solvers.

Figure 5 compares the mean cost and number of migra-
tions resulting from the greedy algorithm, BigMEC, and the
baselines over one day, for the two levels of saturation. We
have executed each experiment 4 times (our simulation handles
simultaneously invoked migration decisions in random order).
While the greedy algorithm can be even worse than not
migrating at all during peak demand between 3:00 and 6:00,
BigMEC’s novel displacement mechanism makes it perform
close to the exact solutions, given the same restriction to
N (i)
σ . The performance difference between BigMEC and the

greedy algorithm can be fully explained by the displacement
mechanism, which is their only difference in this experiment.
Thus, BigMEC’s displacement mechanism provides a clear
advantage over previous fully decentralized service placement
methods, such as [20]–[22].

Although BigMEC’s performance is close to the exact
solution, it needs 5 to 10 times fewer service migrations,
which indicates that further service migrations have a strongly
decreasing benefit. This observation confirms our hypothesis
that adding recursive displacement to BigMEC could only
yield negligible improvements. That BigMEC executes sub-
stantially more migrations than the greedy algorithm illustrates
how its displacement mechanism keeps service instances mo-
bile, confirming it solves the saturation issues mentioned in
Section II-C.

To assess the impact of the size of N (i)
σ,n, we have eval-

uated the more saturated experiment for different values of
n (results in Figure 6). Constrained to the same candidate
sites N (i)

σ,n, BigMEC is very close to the exact solution and
quickly approaches the optimum when increasing the number
of candidates. Clearly, increasing the size of N (i)

σ,n yields
diminishing improvements beyond a certain point. Restricting
migration decisions to a fixed-size set of nearby edge sites
therefore makes BigMEC highly scalable with negligible loss
of placement quality compared to optimal placement. Interest-
ingly, for very small sizes of n, even not migrating yields lower
average cost than repeatedly optimizing within the confines of
N (i)
σ,n (a badly informed placement solution for one step can

result in a less desirable starting position in the next step).

B. Learned Long-Term Utility

Next, we have assessed the impact of estimating the long-
term utility. To accelerate our simulation we have simplified
the scenario in such a way that each service instance requires
1 CPU core and each edge site has 8 cores. This again results
in a maximum demand of 118% of the available resources.

First, we have tested how well our learning approach
can approximate an optimal strategy, given only the indirect
feedback of the reward function. To this end, we have designed
an experiment in which there are no migration costs that could
affect the long-term value of migration actions. Assuming
that there are no future costs, a myopic hand-defined utility
function can serve as a benchmark: Q(sκσ, a

κ′

σ) := −C1(aκ
′

σ).
C1 also acts as the cost function (i.e.,R(sκσ, a

κ′

σ) = −C1(aκ
′

σ))
for reinforcement learning. In the absence of future costs,
this hand-defined utility function is optimal. We have trained
the neural network for the first six hours of simulated time
(not depicted), and then evaluated the entire day without
further training. Again, we have executed each experiment 4
times to assess the repeatability of the reinforcement learning
process. Figure 7a compares the cost of using the myopic
utility function (left) to the cost of using the learned long-term
utility function (right). For reference, each plot also displays
the myopic optimal solution and the myopic exact solution that
is constrained to N (i)

σ,10. Due to the absence of transition costs,
we expected the impact of future events to be so negligible that
the hand-defined myopic utility would not be outperformed by
a utility function that is learned using only trial and error. Yet,
the learned utility functions clearly provide a slightly lower
cost than the hand-defined utility for both BigMEC and the
greedy algorithm. This result demonstrates that our approach
can reliably learn very accurate utility functions.

Next, we have evaluated BigMEC with an objective func-
tion that requires much more long-term reasoning because it
includes substantial migration costs:

C2(aκ
′

σ) = pσ · λσ@κ′︸ ︷︷ ︸
C1

+cm · (1− δκ,κ′),

where cm is the cost of a single migration, and δκ,κ′ = 1 if
κ equals κ′ (otherwise, δκ,κ′ = 0). Thus, the migration cost
cm is incurred only when a migration is executed. Figure 7b
shows the results for cm = 1000, which is substantial enough
to hamper the effectiveness of myopic methods. For reference,
Figure 7b (left) shows the cost C2 over time when re-using the
myopic −C1 as the hand-defined utility function for the greedy
algorithm and BigMEC. Figure 7b (right) shows that, for both
BigMEC and the greedy algorithm, the cost is substantially
lower when using learned long-term utility functions. An
interesting observation is that the performance gap between
BigMEC and the greedy algorithm is less pronounced than
in the previous experiment without migration costs. This is
because both methods learn to perform fewer migrations when
service migration is less desirable, and thus their strategies
align. This finding is also supported by Section IV-B, which
shows the achieved cost, latency, and number of migrations

myopic utility (−C1) learned long-term utility

0:00 6:00
12

:00
18

:00
24

:00
200

300

400

500

m
ea

n
co

st
C

1

0:00 6:00
12

:00
18

:00
24

:00

greedy myopic optimal

BigMEC myopic exact (using N (i)
σ,10)

(a) migration cost cm = 0

myopic utility (−C1) learned long-term utility

0:00 6:00
12

:00
18

:00
24

:00
200

300

400

500

m
ea

n
co

st
C

2

0:00 6:00
12

:00
18

:00
24

:00

(b) migration cost cm = 1000

Figure 7. Myopic utility function compared to learned, long term utility functions.

0 0.5 1 1.5 2
200

400

600

migration cost cm × 1000

m
ea

n
co

st
C

2

0 0.5 1 1.5 2

6

7

8

migration cost cm × 1000

m
ea

n
la

te
nc

y
(m

s)

0 0.5 1 1.5 2

100

101

102

migration cost cm × 1000

m
ea

n
m

ig
ra

tio
ns

/s
(l

og
ar

ith
m

ic
) myopic greedy

myopic BigMEC
learning greedy
learning BigMEC
myopic optimal

myopic exact (using N (i)
σ,10)

Figure 8. Mean cost, service latency, and number of migrations/s for different migration costs.

Table II
MEAN COMMUNICATION TIMES REQUIRED FOR A SINGLE MIGRATION

DECISION BY DIFFERENT MIGRATION/PLACEMENT METHODS, BASED ON
THE USED DATA SETS.

all service locations if service at edge if service at cloud
(mean) (mean) (mean)

greedy 12.9 ms 7.5 ms 19.9 ms
BigMEC 21.8 ms 14.6 ms 27.5 ms
centralized 26.0 ms 26.0 ms 26.0 ms

of the myopic and learning algorithms for a range of migra-
tion costs cm. Further, Section IV-B (left) confirms that, the
higher the future migration costs, the better the learned utility
functions perform relative to the myopic baselines. All in all,
our experiments have validated that BigMEC’s combination of
single-agent reinforcement learning with the new displacing
mechanism for conflict resolution reliably learns good long-
term migration strategies.

a) Decision Time: Through local decision making,
BigMEC can quickly react to unforeseen events and repair
degraded QoS, e.g., caused by an access point change. We have
measured the computation time of migration decisions, which
is dominated by the neural network inference. Whereas the
greedy algorithm takes on average 0.8 ms on our test system,
BigMEC, having to consider many more migration options,
takes 7.2 ms. One training update takes 190 ms to compute.
These times were measured using a single thread of a Intel
Intel Core i9–10900KF CPU @ 3.70GHz.

We have also modeled the communication times required by
service migration/placement algorithms to collect the required
data and communicate the subsequent migration decision to
the involved nodes, and compiled them in Table II. These times

were recorded in the cm = 0 scenario, assuming that the data
from the cloud need not be collected since we consider it to
be infinitely elastic. While centralized approaches always need
the worst-case latency to capture their global view, the decen-
tralized algorithms typically only need local communication.
Nonetheless, the worst-case communication time of BigMEC
in the simulated scenario is longer than that of centralized
approaches due BigMEC’s cascading communication pattern.

V. DISCUSSION

For a real distributed deployment of BigMEC, several
practical challenges still have to be overcome. First, viable
business and pricing models must be identified and translated
into an objective function. This fundamental problem remains
open, as there are currently no proven business models for
MEC operators and no proven closed-loop MEC applications.
Second, the capability to monitor all aspects of the desired
objective function must be present. Third, while our simula-
tion executes migration decisions atomically, BigMEC must
eventually be implemented as a distributed communication
protocol that ensures that overlapping decision processes can
neither block each other nor allocate resources more than
once. Nevertheless, such collisions between concurrent mi-
gration decisions should be rare, given the fast decision time
(< 10 ms) and comparatively infrequent real-world events,
such as access point change due to mobility. The simplest
approach to mitigate such collisions would be for all edge
sites to reject requests to participate in migration decisions
while another decision is in progress.

a) Future Research Directions: While our experiments
have demonstrated that BigMEC generally performs much
better than the greedy algorithm, the faster decision speed of
the greedy algorithm cannot be overlooked. This leads to the

idea of deciding on a case-by-case basis if a migration decision
has to be displacing, or if a faster greedy decision is preferred.
However, we leave this trade-off decision to future work.

Moreover, we could imagine BigMEC nodes of multiple
MEC operators inter-operating in a single system, akin to
the roaming mechanism in cellular networks. Although that
is possible due to the distributed architecture of BigMEC,
further research into the stability of multiple interacting (and
competing) learning processes is needed.

There are limitations that affect all learning based ser-
vice placement/migration techniques. Although experience
has shown them to work well, it is generally impossible
to make performance guarantees, and the performance of
learning methods depends on many hyper-parameters that must
be tuned. Further research into verifiable and less hyper-
parameter-dependent learning methods is needed.

VI. CONCLUSION

This paper presented BigMEC, a new approach to decen-
tralized, reinforcement learning based service migration. We
have solved several problems of previous approaches, using
three key innovations: First, we have demonstrated that a local
preselection of destination sites is sufficient for near-optimal
migration decisions and allows decentralized migration al-
gorithms to be highly scalable with negligible performance
impact. Second, we have presented an approach that decou-
ples learning from resource conflict resolution. That approach
circumvents the need for multi-agent learning methods, which
still suffer from scalability problems. Third, we have demon-
strated that BigMEC’s displacing policy for resource conflict
resolution yields near-optimal migration decisions, despite the
fully decentralized approach. This work does not raise ethical
issues.

ACKNOWLEDGMENT

This work has been funded by the German Research Foun-
dation (DFG) within the Collaborative Research Center 1053
(MAKI) and and by the German Federal Ministry of Education
and Research (BMBF) – 01IS17050.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” Commununication Survey
Tutorials, pp. 1628–1656, 2017. [Online]. Available: https://doi.org/10.
1109/COMST.2017.2682318

[2] M. S. ElBamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
pp. 78–84, 2018.

[3] J. Wang, Z. Feng, S. A. George, R. Iyengar, P. Pillai, and
M. Satyanarayanan, “Towards scalable edge-native applications,” in
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,
SEC 2019, Arlington, Virginia, USA, November 7-9, 2019, S. Chen,
R. Onishi, G. Ananthanarayanan, and Q. Li, Eds. ACM, 2019, pp.
152–165. [Online]. Available: https://doi.org/10.1145/3318216.3363308

[4] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and
C. Peng, “Networked control systems: a survey of trends and tech-
niques,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp.
1–17, 2020.

[5] V. Cozzolino, A. Y. Ding, and J. Ott, “Edge Chaining Framework for
Black Ice Road Fingerprinting,” in Proceedings of the 2nd International
Workshop on Edge Systems, Analytics and Networking. ACM, 2019,
pp. 42–47.

[6] J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai,
S. Yang, and M. Satyanarayanan, “Bandwidth-efficient live video
analytics for drones via edge computing,” in Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 159–173. [Online]. Available:
https://doi.org/10.1109/SEC.2018.00019

[7] B. Varghese, E. de Lara, A. Y. Ding, C. Hong, F. Bonomi,
S. Dustdar, P. Harvey, P. Hewkin, W. Shi, M. Thiele, and P. Willis,
“Revisiting the arguments for edge computing research,” IEEE Internet
Comput., vol. 25, no. 5, pp. 36–42, 2021. [Online]. Available:
https://doi.org/10.1109/MIC.2021.3093924

[8] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
and Tutorials, pp. 1657–1681, 2017.

[9] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in 39th IEEE
Conference on Computer Communications, INFOCOM 2020, Toronto,
ON, Canada, July 6-9, 2020. IEEE, 2020, pp. 2076–2085. [Online].
Available: https://doi.org/10.1109/INFOCOM41043.2020.9155455

[10] F. Aı̈t-Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Comput.
Surv., vol. 53, no. 3, pp. 65:1–65:35, 2020. [Online]. Available:
https://doi.org/10.1145/3391196

[11] J. Gedeon, F. Brandherm, R. Egert, T. Grube, and M. Mühlhäuser,
“What the Fog? Edge Computing Revisited: Promises, Applications
and Future Challenges,” IEEE Access, pp. 152 847–152 878, 2019.
[Online]. Available: https://doi.org/10.1109/ACCESS.2019.2948399

[12] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, pp. 205–228, 2015. [Online]. Available:
https://doi.org/10.1016/j.peva.2015.06.013

[13] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” in Proceedings of the 9th
Biennial Conference on Innovative Data Systems Research (CIDR).
www.cidrdb.org, 2019. [Online]. Available: http://cidrdb.org/cidr2019/
papers/p119-hellerstein-cidr19.pdf

[14] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, 2018.

[15] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proceedings of
the 14th IFIP Networking Conference. IEEE, 2015, pp. 1–9. [Online].
Available: https://doi.org/10.1109/IFIPNetworking.2015.7145316

[16] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in HotNets, 2016, pp. 50–56.

[17] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
arXiv preprint arXiv:1810.01963, 2018.

[18] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling
and learning algorithms for containers in fog computing,” IEEE Trans.
Serv. Comput., vol. 12, no. 5, pp. 712–725, 2019. [Online]. Available:
https://doi.org/10.1109/TSC.2018.2827070

[19] K. Ray, A. Banerjee, and N. C. Narendra, “Proactive microservice
placement and migration for mobile edge computing,” in 5th IEEE/ACM
Symposium on Edge Computing, SEC 2020, San Jose, CA, USA,
November 12-14, 2020. IEEE, 2020, pp. 28–41. [Online]. Available:
https://doi.org/10.1109/SEC50012.2020.00010

[20] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2017.

[21] C. Zhang and Z. Zheng, “Task migration for mobile edge computing
using deep reinforcement learning,” Future Gener. Comput. Syst.,
vol. 96, pp. 111–118, 2019. [Online]. Available: https://doi.org/10.1016/
j.future.2019.01.059

[22] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang,
“Deep reinforcement learning based service migration strategy
for edge computing,” in 13th IEEE International Conference on
Service-Oriented System Engineering, SOSE 2019, San Francisco,

CA, USA, April 4-9, 2019. IEEE, 2019. [Online]. Available:
https://doi.org/10.1109/SOSE.2019.00025

[23] F. Brandherm, L. Wang, and M. Mühlhäuser, “A Learning-based
Framework for Optimizing Service Migration in Mobile Edge Clouds,”
in Proceedings of the 2nd International Workshop on Edge Systems,
Analytics and Networking. ACM, 2019, pp. 12–17. [Online]. Available:
http://doi.acm.org/10.1145/3301418.3313939

[24] A. Abouaomar, Z. Mlika, A. Filali, S. Cherkaoui, and A. Kobbane,
“A deep reinforcement learning approach for service migration
in mec-enabled vehicular networks,” in 46th IEEE Conference on
Local Computer Networks, LCN 2021, Edmonton, AB, Canada,
October 4-7, 2021. IEEE, 2021, pp. 273–280. [Online]. Available:
https://doi.org/10.1109/LCN52139.2021.9524882

[25] C. Liu, F. Tang, K. Li, Z. Tang, and K. Li, “Distributed task migra-
tion optimization in mec by extending multi-agent deep reinforcement
learning approach,” Transactions on Parallel and Distributed Systems,
pp. 1–1, 2020.

[26] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual Multi-Agent Policy Gradients,” in Proceedings of the
32nd AAAI Conference on Artificial Intelligence, (AAAI-18), S. A.
McIlraith and K. Q. Weinberger, Eds. AAAI Press, 2018, pp.
2974–2982. [Online]. Available: https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17193

[27] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C, pp. 156–172, 2008. [Online]. Available:
https://doi.org/10.1109/TSMCC.2007.913919

[28] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “Deep reinforcement learning: A brief survey,” IEEE
Signal Processing Magazine, pp. 26–38, 2017. [Online]. Available:
https://doi.org/10.1109/MSP.2017.2743240

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods
for deep reinforcement learning,” in Proceedings of the 33nd
International Conference on Machine Learning, (ICML). JMLR.org,
2016, pp. 1928–1937. [Online]. Available: http://proceedings.mlr.press/
v48/mniha16.html

[31] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function
Approximation Error in Actor-Critic Methods,” pp. 1582–1591, 2018.
[Online]. Available: http://proceedings.mlr.press/v80/fujimoto18a.html

[32] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile
edge networks: A comprehensive survey,” IEEE Commun. Surv.
Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020. [Online]. Available:
https://doi.org/10.1109/COMST.2020.2986024

[33] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset epfl/mobility (v. 2009-02-24),” Downloaded from https:
//crawdad.org/epfl/mobility/20090224, Feb. 2009.

[34] A. Abujoda and P. Papadimitriou, “MIDAS: middlebox discovery and
selection for on-path flow processing,” in 7th International Conference
on Communication Systems and Networks (COMSNETS). IEEE, 2015,
pp. 1–8. [Online]. Available: https://doi.org/10.1109/COMSNETS.2015.
7098686

